Dynamic shakedown and a reduced kinematic theorem

被引:1
作者
Chinh, PD
机构
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A dynamic shakedown theory is formulated, which preserves all the essentials of the classical quasistatic theory. The emphasis is given to the kinematic theorem. A reduced path-independent kinematic inequality, which does not involve time integrals, is deduced. An analytical example illustrates the application of both static and reduced kinematic theorems in the dynamic range. Copyright (C) 1996 Elsevier Science Ltd
引用
收藏
页码:1055 / 1068
页数:14
相关论文
共 25 条
[1]  
CERADINI G, 1980, J ENG MECH DIV-ASCE, V106, P481
[2]  
Ceradini G, 1969, GIORNALE GENIO CIVIL, V107, P239
[3]   DYNAMIC NON-SHAKEDOWN THEOREM FOR ELASTIC PERFECTLY-PLASTIC CONTINUA [J].
CORRADI, L ;
MAIER, G .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1974, 22 (05) :401-413
[4]   EXTENDED LIMIT DESIGN THEOREMS FOR CONTINUOUS MEDIA [J].
DRUCKER, DC ;
PRAGER, W ;
GREENBERG, HJ .
QUARTERLY OF APPLIED MATHEMATICS, 1952, 9 (04) :381-389
[5]  
GAVARINI C, 1969, GIORNALE GENIO CIVIL, V107, P251
[6]  
GOKHFELD DA, 1966, P 6 SOV C PLAT SHELL, P284
[7]  
HILL R, 1951, PHILOS MAG, V42, P868
[8]   SHAKEDOWN IN ELASTIC-PLASTIC SYSTEMS UNDER DYNAMIC LOADINGS [J].
HO, HS .
JOURNAL OF APPLIED MECHANICS, 1972, 39 (02) :416-&
[9]  
HUNG ND, 1990, MATH PROGRAMMING MET
[10]   ON KINEMATIC UPPER-BOUNDS FOR THE SAFETY FACTOR IN SHAKEDOWN THEORY [J].
KAMENJARZH, J ;
WEICHERT, D .
INTERNATIONAL JOURNAL OF PLASTICITY, 1992, 8 (07) :827-837