Visualization of Whole Slide Histological Images with Automatic Tissue Type Recognition

被引:1
作者
Khvostikov, A., V [1 ]
Krylov, A. S. [1 ]
Mikhailov, I. A. [1 ]
Malkov, P. G. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
histology; digital pathology; segmentation; whole slide images; convolutional neural networks; histological images viewer;
D O I
10.1134/S1054661822030208
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The use of modern approaches based on convolutional neural networks (CNNs) for segmentation of whole slide images (WSIs) helps pathologists obtain more stable and quantitative analysis results and improve diagnosis objectivity. But working with WSIs is extremely difficult due to their resolution and size. To solve this problem in this paper we for the first time present PathScribe - a new universal cross-platform cloud-based tool for comfortable viewing and manipulating large collections of WSIs on almost any device, including tablets and smartphones. We also consider the important problem of automatic tissue type recognition on WSIs and present the WSS1 and WSS2 subsets of PATH-DT-MSU dataset representing a collection of high-quality WSIs of digestive tract tumors with tissue type area annotations. We also propose a new CNN-based method of automatic tissue type recognition on WSIs. It achieved 0.929 accuracy on CRC-VAL-HE-7K dataset (9 classes) and 0.97 accuracy on PATH-DT-MSU-WSS1, WSS2 datasets (5 classes). The developed method allows classifying the areas corresponding to the gastric own mucous glands in the lamina propria and distinguishing the tubular structures of a highly differentiated gastric adenocarcinoma with normal glands.
引用
收藏
页码:483 / 488
页数:6
相关论文
共 10 条
[1]   The Immune Subtypes and Landscape of Gastric Cancer and to Predict Based on the Whole-Slide Images Using Deep Learning [J].
Chen, Yan ;
Sun, Zepang ;
Chen, Wanlan ;
Liu, Changyan ;
Chai, Ruoyang ;
Ding, Jingjing ;
Liu, Wen ;
Feng, Xianzhen ;
Zhou, Jun ;
Shen, Xiaoyi ;
Huang, Shan ;
Xu, Zhongqing .
FRONTIERS IN IMMUNOLOGY, 2021, 12
[2]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[3]   Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study [J].
Kather, Jakob Nikolas ;
Krisam, Johannes ;
Charoentong, Pornpimol ;
Luedde, Tom ;
Herpel, Esther ;
Weis, Cleo-Aron ;
Gaiser, Timo ;
Marx, Alexander ;
Valous, Nektarios A. ;
Ferber, Dyke ;
Jansen, Lina ;
Reyes-Aldasoro, Constantino Carlos ;
Zoernig, Inka ;
Jaeger, Dirk ;
Brenner, Hermann ;
Chang-Claude, Jenny ;
Hoffmeister, Michael ;
Halama, Niels .
PLOS MEDICINE, 2019, 16 (01)
[4]  
Kather Jakob Nikolas, 2018, ZENODO, DOI 10.5281/zenodo1214456
[5]  
Khvostikov Alexander, 2020, ICBIP '20: Proceedings of the 2020 5th International Conference on Biomedical Signal and Image Processing, P14, DOI 10.1145/3417519.3417557
[6]   Whole Slide Imaging (WSI) in Pathology: Current Perspectives and Future Directions [J].
Kumar, Neeta ;
Gupta, Ruchika ;
Gupta, Sanjay .
JOURNAL OF DIGITAL IMAGING, 2020, 33 (04) :1034-1040
[7]  
Mikhailov I., 2021, VIRCHOWS ARCH, V479, DOI [10.1007/s00428-021-03157-8, DOI 10.1007/S00428-021-03157-8]
[8]  
Patel Ankush, 2021, J Pathol Inform, V12, P50, DOI 10.4103/jpi.jpi_66_21
[9]   The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis [J].
Salvi, Massimo ;
Acharya, U. Rajendra ;
Molinari, Filippo ;
Meiburger, Kristen M. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 128
[10]   Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning [J].
Wang, Xiaodong ;
Chen, Ying ;
Gao, Yunshu ;
Zhang, Huiqing ;
Guan, Zehui ;
Dong, Zhou ;
Zheng, Yuxuan ;
Jiang, Jiarui ;
Yang, Haoqing ;
Wang, Liming ;
Huang, Xianming ;
Ai, Lirong ;
Yu, Wenlong ;
Li, Hongwei ;
Dong, Changsheng ;
Zhou, Zhou ;
Liu, Xiyang ;
Yu, Guanzhen .
NATURE COMMUNICATIONS, 2021, 12 (01)