Wigner trajectory characteristics in phase space and field theory

被引:34
作者
Curtright, T
Zachos, C
机构
[1] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA
[2] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 05期
关键词
D O I
10.1088/0305-4470/32/5/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Exact characteristic trajectories are specified for the time-propagating Wigner phase space distribution function. They are especially simple-indeed, classical-for the quantized simple harmonic oscillator, which serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in held phase space. Applications to duality transformations in field theory are discussed.
引用
收藏
页码:771 / 779
页数:9
相关论文
共 34 条
  • [1] Antonell MJ, 1997, ELEC SOC S, V97, P1
  • [2] FORMULATION OF QUANTUM MECHANICS BASED ON THE QUASI-PROBABILITY DISTRIBUTION INDUCED ON PHASE SPACE
    BAKER, GA
    [J]. PHYSICAL REVIEW, 1958, 109 (06): : 2198 - 2206
  • [3] WIGNER FUNCTION AND OTHER DISTRIBUTION-FUNCTIONS IN MOCK PHASE SPACES
    BALAZS, NL
    JENNINGS, BK
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 104 (06): : 347 - 391
  • [4] BARTLETT MS, 1949, P CAMB PHILOS SOC, V45, P545
  • [5] DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES
    BAYEN, F
    FLATO, M
    FRONSDAL, C
    LICHNEROWICZ, A
    STERNHEIMER, D
    [J]. ANNALS OF PHYSICS, 1978, 111 (01) : 61 - 110
  • [6] DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS
    BAYEN, F
    FLATO, M
    FRONSDAL, C
    LICHNEROWICZ, A
    STERNHEIMER, D
    [J]. ANNALS OF PHYSICS, 1978, 111 (01) : 111 - 151
  • [7] SEMICLASSICAL MECHANICS IN PHASE SPACE - STUDY OF WIGNERS FUNCTION
    BERRY, MV
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 287 (1343): : 237 - 271
  • [8] QUANTIZATION PROBLEM AND VARIATIONAL PRINCIPLE IN PHASE-SPACE FORMULATION OF QUANTUM-MECHANICS
    COHEN, L
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (10) : 1863 - 1866
  • [9] Features of time-independent Wigner functions
    Curtright, T
    Fairlie, D
    Zachos, C
    [J]. PHYSICAL REVIEW D, 1998, 58 (02)
  • [10] CURRENTS, CHARGES, AND CANONICAL STRUCTURE OF PSEUDODUAL CHIRAL MODELS
    CURTRIGHT, T
    ZACHOS, C
    [J]. PHYSICAL REVIEW D, 1994, 49 (10): : 5408 - 5421