Hyperspectral Remote Sensing Image Classification Based on Auto-Encoder

被引:0
作者
Dong Anguo [1 ]
Liu Hongchao [1 ]
Zhang Qian [1 ]
Liang Miaomiao [2 ]
机构
[1] Changan Univ, Sch Sci, Xian 710064, Shaanxi, Peoples R China
[2] Jiangxi Univ Sci & Technol, Sch Informat Engn, Ganzhou 341000, Jiangxi, Peoples R China
关键词
remote sensing; hyperspectral remote sensing image; remote sensing image classification; deep learning; spatial-spectral feature;
D O I
10.3788/LOP56.192801
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral remote sensing image data have characteristics of high dimension, spatial correlation, and feature nonlincarity, based on which a spatial-spectral feature extraction classification method based on deep learning is proposed herein. First, the weight decay is added to a stacked sparse auto-encoder. Next, the principal component analysis method is used to reduce the dimensionality of the image data. Then, neighborhood information is sorted, deleted, reorganized, and stacked according to the difference between the first principal component of all pixels in the principal component image block and the central pixel. Finally, the obtained spatial-spectral information is input into a stacked sparse auto-encoder combined with the SoftMax classifier for classification. The comparison of two sets of experimental data reveals that the proposed classification algorithm improves the classification accuracy of hyperspectral images.
引用
收藏
页数:10
相关论文
共 17 条
  • [1] Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Dobigeon, Nicolas
    Parente, Mario
    Du, Qian
    Gader, Paul
    Chanussot, Jocelyn
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) : 354 - 379
  • [2] Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
    Chen, Yushi
    Jiang, Hanlu
    Li, Chunyang
    Jia, Xiuping
    Ghamisi, Pedram
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6232 - 6251
  • [3] Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network
    Chen, Yushi
    Zhao, Xing
    Jia, Xiuping
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2381 - 2392
  • [4] Deep Learning-Based Classification of Hyperspectral Data
    Chen, Yushi
    Lin, Zhouhan
    Zhao, Xing
    Wang, Gang
    Gu, Yanfeng
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2094 - 2107
  • [5] Dong A G, 2017, ACTA OPT SIN, V37
  • [6] Spectral-Spatial Classification of Hyperspectral Images With a Superpixel-Based Discriminative Sparse Model
    Fang, Leyuan
    Li, Shutao
    Kang, Xudong
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (08): : 4186 - 4201
  • [7] Spectral-Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation
    Fang, Leyuan
    Li, Shutao
    Kang, Xudong
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (12): : 7738 - 7749
  • [8] Glorot X, 2011, P 13 INT C ART INT S, P219
  • [9] Spectral-Spatial Constraint Hyperspectral Image Classification
    Ji, Rongrong
    Gao, Yue
    Hong, Richang
    Liu, Qiong
    Tao, Dacheng
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (03): : 1811 - 1824
  • [10] Liu D W, 2016, ACTA OPTICA SINICA, V36