Ab initio yield curve dynamics

被引:2
作者
Hawkins, RJ
Frieden, BR
D'Anna, JL
机构
[1] Countrywide Bank, Thousand Oaks, CA 91360 USA
[2] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
[3] SG Constellat LLC, New York, NY 10020 USA
关键词
bond; interest rate; dynamics; Fisher information; yield curve; term structure; principal-component analysis; proper orthogonal decomposition; Karhunen-Loeve; Galerkin; Fokker-Planck;
D O I
10.1016/j.physleta.2005.06.079
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive an equation of motion for interest-rate yield curves by applying a minimum Fisher information variational approach to the implied probability density. By construction, solutions to the equation of motion recover observed bond prices. More significantly, the form of the resulting equation explains the success of the Nelson-Siegel approach to fitting static yield curves and the empirically observed modal structure of yield curves. A practical numerical implementation of this equation of motion is found by using the Karhunen-Loeve expansion and Galerkin's method to formulate a reduced-order model of yield curve dynamics. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:317 / 323
页数:7
相关论文
共 40 条
[1]  
*BANK INT SETT, 1999, MON EC DEP BAS
[2]  
BOUCHAUD JP, 1999, APPL MATH FINANCE, V6, P209
[3]   THE USE OF THE KARHUNEN-LOEVE PROCEDURE FOR THE CALCULATION OF LINEAR EIGENFUNCTIONS [J].
BREUER, KS ;
SIROVICH, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 96 (02) :277-296
[4]  
BRIGO D, 2001, SPRINGER FINANCE, P1
[5]  
Brody D. C., 2002, Quantitative Finance, V2, P70, DOI 10.1088/1469-7688/2/1/306
[6]   Interest rates and information geometry [J].
Brody, DC ;
Hughston, LP .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2010) :1343-1363
[7]  
DIEBOLD FX, 2003, 200318 FED RES BANK
[8]  
DIEBOLD FX, 2002, 02026 PIER
[9]  
EDELMAN D, 2003, 200347 DUBL GRAD SCH
[10]   Theory of statistical estimation. [J].
Fisher, RA .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1925, 22 :700-725