Properly colored paths and cycles

被引:44
作者
Fujita, Shinya [1 ]
Magnant, Colton [2 ]
机构
[1] Gunma Natl Coll Technol, Dept Math, Gunma 3718530, Japan
[2] Georgia So Univ, Dept Math Sci, Statesboro, GA 30460 USA
基金
日本学术振兴会;
关键词
Properly colored cycles; Properly colored paths; Edge-colored graphs;
D O I
10.1016/j.dam.2011.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In an edge-colored graph, let d(c) (upsilon) be the number of colors on the edges incident to upsilon and let delta(c) (G) be the minimum d(c) (upsilon) over all vertices upsilon is an element of G. In this work, we consider sharp conditions on delta(c) (G) which imply the existence of properly edge-colored paths and cycles, meaning no two consecutive edges have the same color. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1391 / 1397
页数:7
相关论文
共 12 条
[1]  
[Anonymous], P 38 SE INT C COMB G
[2]  
[Anonymous], 1987, CONTRIBUTIONS GEN AL
[3]  
[Anonymous], MATH INFORM SCI HUMA
[4]  
Bang-Jensen J, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-84800-998-1_1
[5]   Alternating cycles and paths in edge-coloured multigraphs: A survey [J].
BangJensen, J ;
Gutin, G .
DISCRETE MATHEMATICS, 1997, 165 :39-60
[6]  
Caro Y, 2008, ELECTRON J COMB, V15
[7]  
Chartrand G., 2005, GRAPHS DIGRAPHS
[8]  
Chartrand G, 2008, MATH BOHEM, V133, P85
[9]  
Dirac G.A., 1952, P LOND MATH SOC, V2, P69, DOI DOI 10.1112/PLMS/S3-2.1.69
[10]   GEOMETRICAL CONSTRAINTS ON BENNETT PREDICTIONS OF CHROMOSOME ORDER [J].
DORNINGER, D ;
TIMISCHL, W ;
TIMISCHL, W .
HEREDITY, 1987, 59 :321-325