Vertex-transitive non-Cayley graphs with arbitrarily large vertex-stabilizer

被引:13
作者
Conder, MDE [1 ]
Walker, CG [1 ]
机构
[1] Univ Auckland, Dept Math, Auckland, New Zealand
关键词
symmetric graph; vertex-transitive; arc-transitive;
D O I
10.1023/A:1008687226819
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A construction is given for an infinite family {Gamma(n)} of finite vertex-transitive non-Cayley graphs of fixed valency with the property that the order of the vertex-stabilizer in the smallest vertex-transitive group of automorphisms of Gamma(n) is a strictly increasing function of n. For each n the graph is 4-valent and are-transitive, with automorphism group a symmetric group of large prime degree p > 2(2n+2). The construction uses Sierpinski's gasket to produce generating permutations for the vertex-stabilizer (a large 2-group).
引用
收藏
页码:29 / 38
页数:10
相关论文
共 9 条
[1]  
[Anonymous], 1992, Chaos and Fractals
[2]  
Conder, 1988, ARS COMBIN A, V25, P95
[3]   AUTOMORPHISM-GROUPS OF SYMMETRIC GRAPHS OF VALENCY-3 [J].
CONDER, M ;
LORIMER, P .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (01) :60-72
[4]  
HUPPERT B, 1983, ENDLICHE GRUPPEN, V1
[5]  
Miller R.C., 1971, J. Combin. Theory B, V10, P163
[6]  
PRAEGER CE, 1990, LECT NOTES MATH, V1456, P63
[7]   A CHARACTERIZATION OF A CLASS OF SYMMETRIC GRAPHS OF TWICE PRIME VALENCY [J].
PRAEGER, CE ;
XU, MY .
EUROPEAN JOURNAL OF COMBINATORICS, 1989, 10 (01) :91-102
[8]  
WEILANDT H, 1964, FINITE PERMUTATION G
[9]  
WEISS R, 1984, ALGEBRAIC METHODS GR, V25, P827