Electrospun Nanofibers of p-Type NiO/n-Type ZnO Heterojunctions with Enhanced Photocatalytic Activity

被引:592
作者
Zhang, Zhenyi
Shao, Changlu [1 ]
Li, Xinghua
Wang, Changhua
Zhang, Mingyi
Liu, Yichun
机构
[1] NE Normal Univ, Ctr Adv Optoelect Funct Mat Res, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
ZnO; NiO; electrospinning; nanohbers; heterojunction; photocatalysis; OXIDE; NANOCRYSTALS; NANOCATALYST; DEGRADATION; FABRICATION; MORPHOLOGY; TIO2;
D O I
10.1021/am100618h
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
One-dimensional electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with different molar ratios of Ni to Zn were successfully synthesized using a facile electrospinning technique. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance (DR) spectroscopy, resonant Raman spectroscopy, photoluminescence (PL) spectroscopy, and surface photovoltage spectroscopy (SPS) were used to characterize the as-synthesized nanofters. The results indicated that the p-n heterojunctions formed between the cubic structure NiO and hexangular structure ZnO in the NiO/ZnO nanofibers. Furthermore, the photocatalytic activity of the as-electrospun NiO/ZnO nanofibers for the degradation of rhodamine B (RB) was much higher than that of electrospun NiO and ZnO nanofibers, which could be ascribed to the formation of p-n heterojunctions in the NiO/ZnO nanohbers. In particular, the p-type NiO/n-type ZnO heterojunccion nanohbers with the original Ni/Zn molar ratio of I exhibited the best catalytic activity, which might be attributed to their high separation efficiency of photogenerated electrons and holes. Notably, the electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions could be easily recycled without a decrease of the photocatalytic activity due to their one-dimensional nanostructural property.
引用
收藏
页码:2915 / 2923
页数:9
相关论文
共 46 条
[1]   Photocatalytic degradation of rhodamine dyes with nano-TiO2 [J].
Aarthi, T. ;
Madras, Giridhar .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (01) :7-14
[2]   Electrical and optical properties of narrow-band materials [J].
Adler, David ;
Feinleib, Julius .
PHYSICAL REVIEW B-SOLID STATE, 1970, 2 (08) :3112-3134
[3]  
[Anonymous], 1995, Handbook of X-ray Photoelectron Spectroscopy. A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data
[4]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[5]   Influence of In incorporation on the electronic structure of ZnO nanowires [J].
Bae, SY ;
Choi, HC ;
Na, CW ;
Park, J .
APPLIED PHYSICS LETTERS, 2005, 86 (03) :1-3
[6]   Spectroelectrochemistry of nanostructured NiO [J].
Boschloo, G ;
Hagfeldt, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (15) :3039-3044
[7]   PHOTOELECTROLYSIS AND PHYSICAL-PROPERTIES OF SEMICONDUCTING ELECTRODE WO3 [J].
BUTLER, MA .
JOURNAL OF APPLIED PHYSICS, 1977, 48 (05) :1914-1920
[8]   Preparation and activity evaluation of p-n junction photocatalyst NiO/TiO2 [J].
Chen Shifu ;
Zhang Sujuan ;
Liu Wei ;
Zhao Wei .
JOURNAL OF HAZARDOUS MATERIALS, 2008, 155 (1-2) :320-326
[9]   High-Efficiency Dye-Sensitized Solar Cells Based on the Composite Photoanocles of SnO2 Nanoparticles/ZnO Nanotetrapods [J].
Chen, Wei ;
Qiu, Yongcai ;
Zhong, Yongchun ;
Wong, Kam Sing ;
Yang, Shihe .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (09) :3127-3138
[10]   Size dependence of photoluminescence and resonant Raman scattering from ZnO quantum dots [J].
Cheng, Hsin-Ming ;
Lin, Kuo-Feng ;
Hsu, -Cheng Hsu ;
Hsieh, Wen-Feng .
APPLIED PHYSICS LETTERS, 2006, 88 (26)