Ambient Temperature Sodium Polysulfide Catholyte for Nonaqueous Redox Flow Batteries

被引:10
作者
Self, Ethan C. [1 ]
Tyler, Jameson L. [2 ]
Nanda, Jagjit [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA
关键词
Catholyte; Electrochemical Impedance Spectroscopy; Redox Flow Batteries; Sodium Polysulfide; ELECTRODE; CHALLENGES; LOSSES;
D O I
10.1149/1945-7111/ac1e57
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This study reports a sodium polysulfide catholyte for nonaqueous redox flow batteries (RFBs). We demonstrate reversible capacities up to 200 mAh/g(S) with negligible fade over 250 cycles at room temperature for sodium polysulfide divide biphenyl full cells containing Na(+)ss ''-Al2O3 solid electrolyte (BASE) membranes. Interestingly, formation of insoluble S and Na2S4 phases did not inhibit the catholyte's cycle life which is likely due to the low concentrations used in the lab-scale prototypes. 3-electrode galvanostatic AC impedance measurements demonstrate that voltage losses were dominated by charge transfer at the cathode, and relevant kinetic parameters (i.e., transfer coefficients and exchange current density) were calculated through a Tafel analysis. To the best of our knowledge, this is the first report applying such an impedance approach to nonaqueous RFBs. Overall, the use of low-cost active materials makes sodium polysulfide divide biphenyl RFBs promising for long duration energy storage applications. If strategies are developed to increase the solubility of S and/or low order polysulfides (Na2Sx, x <= 4), specific energies up to 100 Wh kg(-1) (including combined mass of the anolyte and catholyte) can be achieved.
引用
收藏
页数:7
相关论文
共 25 条
[1]   Long-Duration Electricity Storage Applications, Economics, and Technologies [J].
Albertus, Paul ;
Manser, Joseph S. ;
Litzelman, Scott .
JOULE, 2020, 4 (01) :21-32
[2]  
Bockris J. OM., 1970, MODERN ELECTROCHEMIS
[3]   Optical Microscopy Reveals the Ambient Sodium-Sulfur Discharge Mechanism [J].
Carter, Rachel ;
NewRingeisen, Addison ;
Reed, Daniel ;
Atkinson, Robert W., III ;
Mukherjee, Partha P. ;
Love, Corey T. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (01) :92-100
[4]   Cost-driven materials selection criteria for redox flow battery electrolytes [J].
Dmello, Rylan ;
Milshtein, Jarrod D. ;
Brushett, Fikile R. ;
Smith, Kyle C. .
JOURNAL OF POWER SOURCES, 2016, 330 :261-272
[5]   Low-Temperature Molten Sodium Batteries [J].
Gross, Martha M. ;
Percival, Stephen J. ;
Small, Leo J. ;
Lamb, Joshua ;
Peretti, Amanda S. ;
Spoerke, Erik D. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (11) :11456-11462
[6]   A room temperature Na/S battery using a β" alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode [J].
Kim, Icpyo ;
Park, Jin-Young ;
Kim, Chang Hyeon ;
Park, Jin-Woo ;
Ahn, Jae-Pyoung ;
Ahn, Jou-Hyeon ;
Kim, Ki-Won ;
Ahn, Hyo-Jun .
JOURNAL OF POWER SOURCES, 2016, 301 :332-337
[7]   High performance sodium-sulfur batteries at low temperature enabled by superior molten Na wettability [J].
Li, Minyuan M. ;
Lu, Xiaochuan ;
Zhan, Xiaowen ;
Engelhard, Mark H. ;
Bonnett, Jeffrey F. ;
Polikarpov, Evgueni ;
Jung, Keeyoung ;
Reed, David M. ;
Sprenkle, Vincent L. ;
Li, Guosheng .
CHEMICAL COMMUNICATIONS, 2021, 57 (01) :45-48
[8]   A Sodium Polysulfide Battery with Liquid/Solid Electrolyte: Improving Sulfur Utilization Using P2S5 as Additive and Tetramethylurea as Catholyte Solvent [J].
Medenbach, Lukas ;
Hartmann, Pascal ;
Janek, Juergen ;
Stettner, Timo ;
Balducci, Andrea ;
Dirksen, Cornelius ;
Schulz, Matthias ;
Stelter, Michael ;
Adelhelm, Philipp .
ENERGY TECHNOLOGY, 2020, 8 (03)
[9]   Cell Concepts of Metal-Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications [J].
Medenbach, Lukas ;
Adelhelm, Philipp .
TOPICS IN CURRENT CHEMISTRY, 2017, 375 (05)
[10]   High and intermediate temperature sodium-sulfur batteries for energy storage: development, challenges and perspectives [J].
Nikiforidis, Georgios ;
van de Sanden, M. C. M. ;
Tsampas, Michail N. .
RSC ADVANCES, 2019, 9 (10) :5649-5673