DeepDicomSort: An Automatic Sorting Algorithm for Brain Magnetic Resonance Imaging Data

被引:18
作者
van der Voort, Sebastian R. [1 ,2 ]
Smits, Marion [3 ]
Klein, Stefan [1 ,2 ]
机构
[1] Erasmus MC Univ Med Ctr Rotterdam, Biomed Imaging Grp Rotterdam, Dept Radiol & Nucl Med, Rotterdam, Netherlands
[2] Erasmus MC Univ Med Ctr Rotterdam, Biomed Imaging Grp Rotterdam, Dept Med Informat, Rotterdam, Netherlands
[3] Erasmus MC Univ Med Ctr Rotterdam, Dept Radiol & Nucl Med, Rotterdam, Netherlands
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
DICOM; Brain imaging; Machine learning; Magnetic resonance imaging; BIDS; Data curation; IMAGES; MR; ULTRASOUND; RADIOMICS; DICOM;
D O I
10.1007/s12021-020-09475-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
With the increasing size of datasets used in medical imaging research, the need for automated data curation is arising. One important data curation task is the structured organization of a dataset for preserving integrity and ensuring reusability. Therefore, we investigated whether this data organization step can be automated. To this end, we designed a convolutional neural network (CNN) that automatically recognizes eight different brain magnetic resonance imaging (MRI) scan types based on visual appearance. Thus, our method is unaffected by inconsistent or missing scan metadata. It can recognize pre-contrast T1-weighted (T1w),post-contrast T1-weighted (T1wC), T2-weighted (T2w), proton density-weighted (PDw) and derived maps (e.g. apparent diffusion coefficient and cerebral blood flow). In a first experiment,we used scans of subjects with brain tumors: 11065 scans of 719 subjects for training, and 2369 scans of 192 subjects for testing. The CNN achieved an overall accuracy of 98.7%. In a second experiment, we trained the CNN on all 13434 scans from the first experiment and tested it on 7227 scans of 1318 Alzheimer's subjects. Here, the CNN achieved an overall accuracy of 98.5%. In conclusion, our method can accurately predict scan type, and can quickly and automatically sort a brain MRI dataset virtually without the need for manual verification. In this way, our method can assist with properly organizing a dataset, which maximizes the shareability and integrity of the data.
引用
收藏
页码:159 / 184
页数:26
相关论文
共 47 条
[21]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[22]   FSL [J].
Jenkinson, Mark ;
Beckmann, Christian F. ;
Behrens, Timothy Ej. ;
Woolrich, Mark W. ;
Smith, Stephen M. .
NEUROIMAGE, 2012, 62 (02) :782-790
[23]  
Kingma D. P., 2015, PROC 3TH INT C LEARN
[24]   Radiomics: the bridge between medical imaging and personalized medicine [J].
Lambin, Philippe ;
Leijenaar, Ralph T. H. ;
Deist, Timo M. ;
Peerlings, Jurgen ;
de Jong, Evelyn E. C. ;
van Timmeren, Janita ;
Sanduleanu, Sebastian ;
Larue, Ruben T. H. M. ;
Even, Aniek J. G. ;
Jochems, Arthur ;
van Wijk, Yvonka ;
Woodruff, Henry ;
van Soest, Johan ;
Lustberg, Tim ;
Roelofs, Erik ;
van Elmpt, Wouter ;
Dekker, Andre ;
Mottaghy, Felix M. ;
Wildberger, Joachim E. ;
Walsh, Sean .
NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (12) :749-762
[25]  
LaMontagne P. J., 2018, ALZHEIMERS DEMENT, V14, pP1097, DOI 10.1016/j.jalz
[26]   CollaGAN: Collaborative GAN for Missing Image Data Imputation [J].
Lee, Dongwook ;
Kim, Junyoung ;
Moon, Won-Jin ;
Ye, Jong Chul .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2482-2491
[27]  
Li R, 2014, 2014 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), P1030, DOI 10.1109/ICInfA.2014.6932801
[28]   The first step for neuroimaging data analysis: DICOM to NIfTI conversion [J].
Li, Xiangrui ;
Morgan, Paul S. ;
Ashburner, John ;
Smith, Jolinda ;
Rorden, Christopher .
JOURNAL OF NEUROSCIENCE METHODS, 2016, 264 :47-56
[29]   Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma [J].
Li, Zeju ;
Wang, Yuanyuan ;
Yu, Jinhua ;
Guo, Yi ;
Cao, Wei .
SCIENTIFIC REPORTS, 2017, 7
[30]   An overview of deep learning in medical imaging focusing on MRI [J].
Lundervold, Alexander Selvikvag ;
Lundervold, Arvid .
ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2019, 29 (02) :102-127