Oxygen reduction reactions on pure and nitrogen-doped graphene: a first-principles modeling

被引:108
作者
Boukhvalov, Danil W. [1 ]
Son, Young-Woo [1 ]
机构
[1] Korea Inst Adv Study, Sch Computat Sci, Seoul 130722, South Korea
关键词
METAL-FREE ELECTROCATALYSTS; CARBON NANOTUBES; CATALYSTS; GRAPHITE; PD;
D O I
10.1039/c1nr11307k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Based on first principles density functional theory calculations we explored energetics of oxygen reduction reaction over pristine and nitrogen-doped graphene with different amounts of nitrogen doping. The process of oxygen reduction requires one more step than the same reaction catalyzed by metals. Results of calculations evidence that for the case of light doped graphene (about 4% of nitrogen) the energy barrier for each step is lower than for the same process on a Pt surface. In contrast to the catalysis on a metal surface the maximal coverage of doped graphene is lower and depends on the corrugation of graphene. Changes of the energy barriers caused by oxygen load and corrugation are also discussed.
引用
收藏
页码:417 / 420
页数:4
相关论文
共 44 条
[1]   Electric Field Activated Hydrogen Dissociative Adsorption to Nitrogen-Doped Graphene [J].
Ao, Z. M. ;
Peeters, F. M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (34) :14503-14509
[2]   Modeling of graphite oxide [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (32) :10697-10701
[3]   Chemical functionalization of graphene [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (34)
[4]  
Boukhvalov DW, 2008, NANO LETT, V8, P4373, DOI [10.1021/nl802234n, 10.1021/nl802098g]
[5]   Enhancement of Chemical Activity in Corrugated Graphene [J].
Boukhvalov, Danil W. ;
Katsnelson, Mikhail I. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (32) :14176-14178
[6]   Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications [J].
Chen, Zhu ;
Higgins, Drew ;
Tao, Haisheng ;
Hsu, Ryan S. ;
Chen, Zhongwei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (49) :21008-21013
[7]   High oxygen-reduction activity and durability of nitrogen-doped graphene [J].
Geng, Dongsheng ;
Chen, Ying ;
Chen, Yougui ;
Li, Yongliang ;
Li, Ruying ;
Sun, Xueliang ;
Ye, Siyu ;
Knights, Shanna .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :760-764
[8]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764
[9]   Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT [J].
Hansen, Heine A. ;
Rossmeisl, Jan ;
Norskov, Jens K. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (25) :3722-3730
[10]  
Hoare J.P., 1985, STANDARD POTENTIALS