Some results of nontrivial solutions for Klein-Gordon-Maxwell systems with local super-quadratic conditions

被引:7
作者
Zhang, Qiongfen [1 ]
Gan, Canlin [1 ]
Xiao, Ting [1 ]
Jia, Zhen [1 ]
机构
[1] Guilin Univ Technol, Coll Sci, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Local super-quadratic conditions; Klein-Gordon-Maxwell system; Existence; Variational methods; GROUND-STATE SOLUTIONS; SOLITARY WAVES; EQUATION; NONEXISTENCE; EXISTENCE;
D O I
10.1007/s12220-020-00483-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of nontrivial solutions for the following kind of Klein-Gordon-Maxwell system {- u+V(x)u-(2 omega+phi) phi u = f(x,u), x is an element of R-3, Delta phi=(omega+phi)u(2), x is an element of R-3, is investigated, where omega>0 is a constant, V is an element of C(R-3,R) is either periodic or coercive and is allowed to be sign-changing, f is an element of C(R(3)x R, R) and f is subcritical and local super-linear. Using local super-quadratic conditions and other suitable assumptions on the nonlinearity f (x, u) and the potential V(x), the existence of nontrivial solutions for the above system is established. The obtained results in this paper improve the related ones in the literature.
引用
收藏
页码:5372 / 5394
页数:23
相关论文
共 39 条
[1]   Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system [J].
Azzollini, A. ;
Pisani, L. ;
Pomponio, A. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 :449-463
[2]  
Azzollini A, 2010, TOPOL METHOD NONL AN, V35, P33
[3]  
Bartsch T, 2005, HBK DIFF EQUAT STATI, V2, P1, DOI 10.1016/S1874-5733(05)80009-9
[4]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[5]   The nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (09) :6065-6072
[6]   Spinning Q-Balls for the Klein-Gordon-Maxwell Equations [J].
Benci, Vieri ;
Fortunato, Donato .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 295 (03) :639-668
[7]   Positive ground state solutions for the critical Klein-Gordon-Maxwell system with potentials [J].
Carriao, Paulo C. ;
Cunha, Patricia L. ;
Miyagaki, Olimpio H. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (10) :4068-4078
[8]   Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with of Maxwell's equations [J].
Cassani, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (7-8) :733-747
[9]   Semiclassical ground state solutions for critical Schrodinger-Poisson systems with lower perturbations [J].
Chen, Sitong ;
Fiscella, Alessio ;
Pucci, Patrizia ;
Tang, Xianhua .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (06) :2672-2716
[10]   On the planar Schrodinger-Poisson system with the axially symmetric potential [J].
Chen, Sitong ;
Tang, Xianhua .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (03) :945-976