A new function of ROD1 in nonsense-mediated mRNA decay

被引:40
作者
Brazao, T. F. [1 ]
Demmers, J. [2 ]
van IJcken, W. [2 ]
Strouboulis, J. [3 ]
Fornerod, M. [4 ]
Romao, L. [5 ,6 ]
Grosveld, F. G. [1 ]
机构
[1] Erasmus MC, Dept Cell Biol & Genet, NL-3015 GE Rotterdam, Netherlands
[2] Erasmus MC, Dept Biom, NL-3015 GE Rotterdam, Netherlands
[3] Biomed Sci Res Ctr Alexander Fleming, Inst Mol Oncol, Vari 16672, Greece
[4] Erasmus MC, Dept Biochem, NL-3015 GE Rotterdam, Netherlands
[5] Inst Nacl Saude Dr Ricardo Jorge, Dept Genet, P-1649016 Lisbon, Portugal
[6] Univ Lisbon, Fac Ciencias, BioFIG, Ctr Biodivers Funct & Integrat Genom, P-1699 Lisbon, Portugal
关键词
NMD; ROD1; UPF1; EXON-JUNCTION COMPLEX; TRACT BINDING-PROTEIN; HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEINS; CRYPTIC UNSTABLE TRANSCRIPTS; MAMMALIAN-CELLS; FISSION YEAST; SURVEILLANCE; EXPRESSION; PATHWAY; TRANSLATION;
D O I
10.1016/j.febslet.2012.03.015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA-binding proteins play a crucial role in the post-transcriptional regulation of gene expression. Polypyrimidine tract binding protein (PTB in humans) has been extensively characterized as an important splicing factor, and has additional functions in 30 end processing and translation. ROD1 is a PTB paralog containing four RRM (RNA recognition motif) domains. Here, we discover a function of ROD1 in nonsense-mediated mRNA decay (NMD). We show that ROD1 and the core NMD factor UPF1 interact and co-regulate an extensive number of target genes. Using a reporter system, we demonstrate that ROD1, similarly to UPF1 and UPF2, is required for the destabilization of a known NMD substrate. Finally, we show through RIP-seq that ROD1 and UPF1 associate with a significant number of common transcripts. Structured summary of protein interactions: ROD1 physically interacts with TMED10, RNP1, PCD6, LOC493753, RBM39, BCL7C, GST-PI, AP-3, RAE1, ASH2L2, SF3B10, SDP3, CDC23, ARL10C, CAF1B, CEP55, EXPORTIN 1, NCOR1, LENG1, SNAP29, RCBTB1, RPS10, NUP155, DYNLL2, LSF, HSPC137, TNRC6C, XPO5, TMPO, SRP19, SRI, UPF2, TRF2, SSRP1, HOXB9, C11ORF73, TAF15, WDR48, SMARCA5, CUL-2, THOC2, SEC16A, CAD, LSM2, U11/U12 snRNP, TUBA, NEZHA, TRANSPORTIN 2, CGI-135, RER1, snRP E, PRPF19, TRANSPORTIN, IER3ip1, DGCR14, RPS19BP1, TOPBP1, YIP1, CPSF6, ASF1, RBM9, ARCN1, U4/U6 snRNP, CUGbp2, WDR41, p53, DNAJC9, DAZap1, TDP43, MYL6, HEY1, RAB8B, BET1, COFILIN1, MYO12A, VAT1, PRA1, MAP7D2, MAZ, PCD7, DNAJ, GNL3L, BCAS2, NUP50, RGSip1, TRIM33B, HMG-1, RAB10, ANNEXIN A2, YKT6, TRANSFERRIN, TIM44, CTP synthase, CDC42, PPIL1, HOXA9B, GCN1, hnRNP A1, LDH-B, TRAP25, mtSSB, MED8, TIA1, HMMR, B99, H1d, IMPORTIN 5, HOX7, ZMAT5, RPR1A, MARCKS, NACA, PRMT1, HOXC9, KIAA1741, HSP90AA1, LSM14, COL1A1, PRC1, CDK2, TRX-1, CSE1, COX5B, ARL1, SEPT9, BCR/ABL, CLIP-ap1, ALY, BACH1, TRIP230, DES, GFAP, APC10, MARK2, FIP1l1, RPL38, HOXC8, GATAd2A, HSPC128, TUBB, RPL11, FAM83D, UPF1, ZFP768, RPL35A, RPL30, RAB1A, BTEbp4, RNA Pol II, SEC24B, RAN, RAC3, RPS28, RPS27, snRP A, SNF5/INI1, C1ORF35, RPS7, RPS4X, RAMA1, RPS14, TUBA6, FAM128B, T-PLASTIN, FLYWCH, MYH10, ARP1, U2AF, SERPINE1, NEFM, KIAA1826, Ki-67 and RPS11 by anti bait coimmunoprecipitation (View interaction) ROD1 physically interacts with LOC100288473, PTBP1, LOC100291593, RRP36, PCMT1, BBS9, FAM83H, ARHGEF17, VIPAR, LOC100132738, PTBP2, SACS, KBTBD5, GPR98, hnRNP F, OTUD4, CAMSAP1L1, C16ORF48, FAM64A, SCN3A, IQGAP3, ZMAT5, TEX15, NOL8, RBM4, snRNP48, TMEM33, UNC45A, OGT, DIAPH3, CDK17, LARS, FAM83D, TMTC2, HSPA1A, PCM1, CSNK1A1, PHF5A, CCDC77, PLECTIN, SETX, HSPB1, HuR, NARF, MYH2, HSP90AA1, HLTF, GSK3b, CDC42, MAGOH, TRIM21, UPF1, RBMS1, ERI1, CROCC, CSNK1D, CTNNA1, AIMP2, VPS33B, FLII, CTNNB1, eIF4G2, APC, TCF20, CYCLIN T1, HIRA, BACH1, XRCC6, HMMR, RPL9, HSD17B4, MAP2, hnRNP H1, GRIA4, FRG1, HistH1e, MSH6, CELF2, CELF1, MYBbp1A, CLASP2, STIP1, GIPC1, SF3a1, CSNK1E, CDC14A, PPIH, RBM14, DYNLL2, RALY, PUF60, TRIM33, SF3b1, TARDBP, PAPD7, SF3b2, LRRFIP2, SUPT16H, FAM110B, hnRNP Ul1, KIAA1543, AXIN1, RNP1, HERC1, BANF1, XRCC5, XPC, FYTTD1, PDCD7, TAF15, YWHAH, RB1CC1, MATR3, SRRM1, SFRS14, LAGE3, XIRP1, ARHGEF2, PRPF3, PUM1 and IQCB1 by anti bait coimmunoprecipitation (View interaction) (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
引用
收藏
页码:1101 / 1110
页数:10
相关论文
共 54 条
[1]   Termination of cryptic unstable transcripts is directed by yeast RNA-Binding proteins Nrd1 and Nab3 [J].
Arigo, John T. ;
Eyler, Daniel E. ;
Carroll, Kristina L. ;
Corden, Jeffry L. .
MOLECULAR CELL, 2006, 23 (06) :841-851
[2]   Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends [J].
Azzalin, Claus M. ;
Reichenbach, Patrick ;
Khoriauli, Lela ;
Giulotto, Elena ;
Lingner, Joachim .
SCIENCE, 2007, 318 (5851) :798-801
[3]   The human RNA surveillance factor UPF1 is required for S phase progression and genome stability [J].
Azzalin, CM ;
Lingner, J .
CURRENT BIOLOGY, 2006, 16 (04) :433-439
[4]   Surface expression of heterogeneous nuclear RNA binding protein M4 on Kupffer cell relates to its function as a carcinoembryonic antigen receptor [J].
Bajenova, O ;
Stolper, E ;
Gapon, S ;
Sundina, N ;
Zimmer, R ;
Thomas, P .
EXPERIMENTAL CELL RESEARCH, 2003, 291 (01) :228-241
[5]   Polypyrimidine tract binding protein regulates IRES-mediated gene expression during apoptosis [J].
Bushell, Martin ;
Stoneley, Mark ;
Kong, Yi Wen ;
Hamilton, Tiffany L. ;
Spriggs, Keith A. ;
Dobbyn, Helen C. ;
Qin, Xiaoli ;
Sarnow, Peter ;
Willis, Anne E. .
MOLECULAR CELL, 2006, 23 (03) :401-412
[6]   The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression [J].
Carpenter, Bnian ;
MacKay, Catriona ;
Alnabulsi, Ayham ;
MacKay, Morven ;
Telfer, Colin ;
Melvin, William T. ;
Murray, Graeme I. .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2006, 1765 (02) :85-100
[7]   Polypyrimidine tract binding protein modulates efficiency of polyadenylation [J].
Castelo-Branco, P ;
Furger, A ;
Wollerton, M ;
Smith, C ;
Moreira, A ;
Proudfoot, N .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (10) :4174-4183
[8]   An alternative branch of the nonsense-mediated decay pathway [J].
Chan, Wai-Kin ;
Huang, Lulu ;
Gudikote, Jayanthi P. ;
Chang, Yao-Fu ;
Imam, J. Saadi ;
MacLean, James A., II ;
Wilkinson, Miles F. .
EMBO JOURNAL, 2007, 26 (07) :1820-1830
[9]   Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway [J].
Chen, CYA ;
Shyu, AB .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (14) :4805-4813
[10]   Cotranscriptional effect of a premature termination codon revealed by live-cell imaging [J].
de Turris, Valeria ;
Nicholson, Pamela ;
Orozco, Rodolfo Zamudio ;
Singer, Robert H. ;
Muehlemann, Oliver .
RNA, 2011, 17 (12) :2094-2107