Glassy Li metal anode for high-performance rechargeable Li batteries

被引:236
作者
Wang, Xuefeng [1 ]
Pawar, Gorakh [2 ]
Li, Yejing [1 ]
Ren, Xiaodi [3 ]
Zhang, Minghao [1 ]
Lu, Bingyu [1 ]
Banerjee, Abhik [1 ]
Liu, Ping [1 ]
Dufek, Eric J. [4 ]
Zhang, Ji-Guang [3 ]
Xiao, Jie [3 ]
Liu, Jun [3 ]
Meng, Ying Shirley [1 ]
Liaw, Boryann [4 ]
机构
[1] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
[2] Idaho Natl Lab, Dept Mat Sci & Engn, Idaho Falls, ID USA
[3] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
[4] Idaho Natl Lab, Dept Energy Storage & Adv Transportat, Idaho Falls, ID 83401 USA
基金
美国国家科学基金会;
关键词
ELECTRON-MICROSCOPY; LITHIUM METAL; DENDRITIC GROWTH; ELECTRODEPOSITION; DISSOLUTION; NUCLEATION; INTERFACES; REAXFF; FIELD;
D O I
10.1038/s41563-020-0729-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal is considered an ideal anode for high-energy rechargeable lithium batteries, but understanding its nucleation and growth at the nanoscale remains challenging. Using cryogenic transmission electron microscopy and simulations, a structural and morphological evolution scenario for Li deposits is proposed. Lithium metal has been considered an ideal anode for high-energy rechargeable Li batteries, although its nucleation and growth process remains mysterious, especially at the nanoscale. Here, cryogenic transmission electron microscopy was used to reveal the evolving nanostructure of Li metal deposits at various transient states in the nucleation and growth process, in which a disorder-order phase transition was observed as a function of current density and deposition time. The atomic interaction over wide spatial and temporal scales was depicted by reactive molecular dynamics simulations to assist in understanding the kinetics. Compared to crystalline Li, glassy Li outperforms in electrochemical reversibility, and it has a desired structure for high-energy rechargeable Li batteries. Our findings correlate the crystallinity of the nuclei with the subsequent growth of the nanostructure and morphology, and provide strategies to control and shape the mesostructure of Li metal to achieve high performance in rechargeable Li batteries.
引用
收藏
页码:1339 / +
页数:12
相关论文
共 38 条
[1]   Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature [J].
Akolkar, Rohan .
JOURNAL OF POWER SOURCES, 2014, 246 :84-89
[2]   Mathematical model of the dendritic growth during lithium electrodeposition [J].
Akolkar, Rohan .
JOURNAL OF POWER SOURCES, 2013, 232 :23-28
[3]   Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys - Part I: Ostwald ripening theories [J].
Baldan, A .
JOURNAL OF MATERIALS SCIENCE, 2002, 37 (11) :2171-2202
[4]   ELECTROCHEMICAL ASPECTS OF THE GENERATION OF RAMIFIED METALLIC ELECTRODEPOSITS [J].
CHAZALVIEL, JN .
PHYSICAL REVIEW A, 1990, 42 (12) :7355-7367
[5]   Visualization of Lithium Plating and Stripping via in Operando Transmission X-ray Microscopy [J].
Cheng, Ju-Hsiang ;
Assegie, Addisu Alemayehu ;
Huang, Chen-Jui ;
Lin, Min-Hsien ;
Tripathi, Alok Mani ;
Wang, Chun-Chieh ;
Tang, Mau-Tsu ;
Song, Yen-Fang ;
Su, Wei-Nien ;
Hwang, Bing Joe .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (14) :7761-7766
[6]   Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing [J].
Chi, Miaofang ;
Wang, Chao ;
Lei, Yinkai ;
Wang, Guofeng ;
Li, Dongguo ;
More, Karren L. ;
Lupini, Andrew ;
Allard, Lawrence F. ;
Markovic, Nenad M. ;
Stamenkovic, Vojislav R. .
NATURE COMMUNICATIONS, 2015, 6
[7]   Nanodiamond Therapeutic Delivery Agents Mediate Enhanced Chemoresistant Tumor Treatment [J].
Chow, Edward K. ;
Zhang, Xue-Qing ;
Chen, Mark ;
Lam, Robert ;
Robinson, Erik ;
Huang, Houjin ;
Schaffer, Daniel ;
Osawa, Eiji ;
Goga, Andrei ;
Ho, Dean .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (73)
[8]   Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy [J].
Cohen, YS ;
Cohen, Y ;
Aurbach, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (51) :12282-12291
[9]   Developing a second nearest-neighbor modified embedded atom method interatomic potential for lithium [J].
Cui, Zhiwei ;
Gao, Feng ;
Cui, Zhihua ;
Qu, Jianmin .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2012, 20 (01)
[10]  
Dubrovskii V.G., 2014, NUCL THEORY GROWTH N, P1