A Turan type inequality for rational functions with prescribed poles

被引:1
|
作者
Yu, DS [1 ]
Zhou, SP [1 ]
机构
[1] Zhejiang Sci Tech Univ, Math Inst, Econ Dev Area, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
polynomial; inequality; real zero;
D O I
10.1007/s10474-005-0246-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By employing a novel idea and simple techniques, we substantially generalize the Turin type inequality for rational functions with real zeros and prescribed poles established by Min [5] to include L-p spaces for 1 <= p <= infinity while loosing the restriction p > 2 at the same time.
引用
收藏
页码:281 / 287
页数:7
相关论文
共 50 条
  • [1] A Turan type inequality for rational functions with prescribed poles
    Yu, DS
    Zhou, SP
    ACTA MATHEMATICA HUNGARICA, 2005, 108 (04) : 319 - 325
  • [2] WEIGHTED TURAN TYPE INEQUALITY FOR RATIONAL FUNCTIONS WITH PRESCRIBED POLES
    Zhao, Dejun
    Zhou, Songping
    Yu, Dansheng
    Wang, Jianli
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (02): : 251 - 265
  • [3] Turan type inequalities for rational functions with prescribed poles
    Akhter, Tawheeda
    Malik, S. A.
    Zargar, B. A.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 1003 - 1009
  • [4] A Turán type inequality for rational functions with prescribed poles
    D. S. Yu
    S. P. Zhou
    Acta Mathematica Hungarica, 2005, 108 : 319 - 325
  • [5] A Turán type inequality for rational functions with prescribed poles
    D. S. Yu
    S. P. Zhou
    Acta Mathematica Hungarica, 2005, 109 : 281 - 287
  • [6] BERNSTEIN-TYPE INEQUALITIES FOR RATIONAL FUNCTIONS WITH PRESCRIBED POLES
    LI, X
    MOHAPATRA, RN
    RODRIGUEZ, RS
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 51 : 523 - 531
  • [7] ON BERNSTEIN-TYPE INEQUALITIES FOR RATIONAL FUNCTIONS WITH PRESCRIBED POLES
    Mir, Abdullah
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (04): : 615 - 622
  • [8] Inequalities for Rational Functions with Prescribed Poles
    Rather N.A.
    Iqbal A.
    Dar I.
    Mathematical Notes, 2023, 114 (3-4) : 593 - 607
  • [9] Inequalities for rational functions with prescribed poles
    Min, G
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (01): : 152 - 166
  • [10] Inequalities For rational functions with prescribed poles
    Hans, S.
    Tripathi, D.
    Mogbademu, A. A.
    Tyagi, Babita
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (01) : 157 - 169