The Structure and Function of an Arabinan-specific α-1,2-Arabinofuranosidase Identified from Screening the Activities of Bacterial GH43 Glycoside Hydrolases

被引:82
作者
Cartmell, Alan [1 ,2 ]
McKee, Lauren S. [1 ,2 ]
Pena, Maria J. [2 ]
Larsbrink, Johan [3 ]
Brumer, Harry [3 ]
Kaneko, Satoshi [4 ]
Ichinose, Hitomi [4 ]
Lewis, Richard J. [1 ]
Vikso-Nielsen, Anders [5 ]
Gilbert, Harry J. [1 ,2 ]
Marles-Wright, Jon [1 ]
机构
[1] Newcastle Univ, Inst Cell & Mol Biosci, Sch Med, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
[2] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA
[3] AlbaNova Univ Ctr, Sch Biotechnol, Royal Inst Technol, S-10691 Stockholm, Sweden
[4] Natl Food Res Inst, Food Biotechnol Div, Tsukuba, Ibaraki 3058642, Japan
[5] Novozymes AS, DK-2880 Bagsvaerd, Denmark
基金
美国能源部; 英国生物技术与生命科学研究理事会;
关键词
CELL-WALL DEGRADATION; BACTEROIDES-THETAIOTAOMICRON; BIOCHEMISTRY; SEQUENCE; COMPLEX; FAMILY; MODEL; ARABINOFURANOSIDASE; MECHANISM; INSIGHTS;
D O I
10.1074/jbc.M110.215962
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reflecting the diverse chemistry of plant cell walls, microorganisms that degrade these composite structures synthesize an array of glycoside hydrolases. These enzymes are organized into sequence-, mechanism-, and structure-based families. Genomic data have shown that several organisms that degrade the plant cell wall contain a large number of genes encoding family 43 (GH43) glycoside hydrolases. Here we report the biochemical properties of the GH43 enzymes of a saprophytic soil bacterium, Cellvibrio japonicus, and a human colonic symbiont, Bacteroides thetaiotaomicron. The data show that C. japonicus uses predominantly exo-acting enzymes to degrade arabinan into arabinose, whereas B. thetaiotaomicron deploys a combination of endo-and side chain-cleaving glycoside hydrolases. Both organisms, however, utilize an arabinan-specific alpha-1,2-arabinofuranosidase in the degradative process, an activity that has not previously been reported. The enzyme can cleave alpha-1,2-arabinofuranose decorations in single or double substitutions, the latter being recalcitrant to the action of other arabinofuranosidases. The crystal structure of the C. japonicus arabinan-specific alpha-1,2-arabinofuranosidase, CjAbf43A, displays a five-bladed beta-propeller fold. The specificity of the enzyme for arabinan is conferred by a surface cleft that is complementary to the helical backbone of the polysaccharide. The specificity of CjAbf43A for alpha-1,2-L-arabinofuranose side chains is conferred by a polar residue that orientates the arabinan backbone such that O2 arabinose decorations are directed into the active site pocket. A shelflike structure adjacent to the active site pocket accommodates O3 arabinose side chains, explaining how the enzyme can target O2 linkages that are components of single or double substitutions.
引用
收藏
页码:15483 / 15495
页数:13
相关论文
共 48 条
  • [1] THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY
    BAILEY, S
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 : 760 - 763
  • [2] Pseudomonas cellulosa expresses a single membrane-bound glycoside hydrolase family 51 arabinofuranosidase
    Beylot, MH
    Emami, K
    McKie, VA
    Gilbert, HJ
    Pell, G
    [J]. BIOCHEMICAL JOURNAL, 2001, 358 : 599 - 605
  • [3] The Pseudomonas cellulosa glycoside hydrolase family 51 arabinofuranosidase exhibits wide substrate specificity
    Beylot, MH
    McKie, VA
    Voragen, AGJ
    Doeswijk-Voragen, CHL
    Gilbert, HJ
    [J]. BIOCHEMICAL JOURNAL, 2001, 358 : 607 - 614
  • [4] Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period
    Bjursell, Magnus K.
    Martens, Eric C.
    Gordon, Jeffrey I.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (47) : 36269 - 36279
  • [5] The structure of an inverting GH43 β-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues
    Bruex, Christian
    Ben-David, Alon
    Shallom-Shezifi, Dalia
    Leon, Maya
    Niefind, Karsten
    Shoham, Gil
    Shoham, Yuval
    Schomburg, Dietmar
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2006, 359 (01) : 97 - 109
  • [6] Structure of the two-subsite β-D-xyloidase from Selenomonas ruminantium in complex with 1,3-bis [tris(hydroxymethyl)methylamino] propane
    Brunzelle, Joseph S.
    Jordan, Douglas B.
    McCaslin, Darrell R.
    Olczak, Andrzej
    Wawrzak, Zdzislaw
    [J]. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2008, 474 (01) : 157 - 166
  • [7] Burton RA, 2010, NAT CHEM BIOL, V6, P724, DOI [10.1038/NCHEMBIO.439, 10.1038/nchembio.439]
  • [8] The structure, function, and biosynthesis of plant cell wall pectic polysaccharides
    Caffall, Kerry Hosmer
    Mohnen, Debra
    [J]. CARBOHYDRATE RESEARCH, 2009, 344 (14) : 1879 - 1900
  • [9] The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics
    Cantarel, Brandi L.
    Coutinho, Pedro M.
    Rancurel, Corinne
    Bernard, Thomas
    Lombard, Vincent
    Henrissat, Bernard
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 : D233 - D238
  • [10] The X6 "thermostabilizing" domains of xylanases are carbohydrate-binding modules:: Structure and biochemistry of the Clostridium thermocellum X6b domain
    Charnock, SJ
    Bolam, DN
    Turkenburg, JP
    Gilbert, HJ
    Ferreira, LMA
    Davies, GJ
    Fontes, CMGA
    [J]. BIOCHEMISTRY, 2000, 39 (17) : 5013 - 5021