SUPPORT VECTOR MACHINES REGRESSION FOR ESTIMATION OF FOREST PARAMETERS FROM AIRBORNE LASER SCANNING DATA

被引:0
|
作者
Monnet, J. -M. [1 ]
Berger, F. [1 ]
Chanussot, J. [2 ]
机构
[1] UR EMGR, 2 Rue Papeterie,BP 76, F-38402 St Martin Dheres, France
[2] Grenoble Inst Technol, GIPSA Lab, F-38402 St Martin Dheres, France
关键词
Support vector regression; airborne laser scanning; forest parameters estimation; PREDICTION;
D O I
10.1109/IGARSS.2010.5651702
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Estimation of forest stand parameters from airborne laser scanning data relies on the selection of laser metrics sets and numerous field plots for model calibration. In mountainous areas, forest is highly heterogeneous and field data collection labour-intensive hence the need for robust prediction methods. The aim of this paper is to compare stand parameters prediction accuracies of support vector machines regression and multiple regression models. Sensitivity of these techniques to the number and type of laser metrics, and use of dimension reduction techniques such as principal component and independent component analyses are also tested. Results show that support vector regression was less accurate but more stable than multiple regression for the prediction of forest parameters.
引用
收藏
页码:2711 / 2714
页数:4
相关论文
共 50 条
  • [21] Evolutionary support vector regression machines
    Stoean, Ruxandra
    Preuss, Mike
    Dumitrescu, D.
    Stoean, Catalin
    SYNASC 2006: EIGHTH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, PROCEEDINGS, 2007, : 330 - +
  • [22] Analysis of Support Vector Machines Regression
    Tong, Hongzhi
    Chen, Di-Rong
    Peng, Lizhong
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (02) : 243 - 257
  • [23] Support vector fuzzy regression machines
    Hong, DH
    Hwang, CH
    FUZZY SETS AND SYSTEMS, 2003, 138 (02) : 271 - 281
  • [24] Support Vector Machines for classification and regression
    Brereton, Richard G.
    Lloyd, Gavin R.
    ANALYST, 2010, 135 (02) : 230 - 267
  • [25] Adaptive support vector machines for regression
    Palaniswami, M
    Shilton, A
    ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 1043 - 1049
  • [26] Nonstationary regression with support vector machines
    Guillermo L. Grinblat
    Lucas C. Uzal
    Pablo F. Verdes
    Pablo M. Granitto
    Neural Computing and Applications, 2015, 26 : 641 - 649
  • [27] Analysis of Support Vector Machines Regression
    Hongzhi Tong
    Di-Rong Chen
    Lizhong Peng
    Foundations of Computational Mathematics, 2009, 9 : 243 - 257
  • [28] Nonstationary regression with support vector machines
    Grinblat, Guillermo L.
    Uzal, Lucas C.
    Verdes, Pablo F.
    Granitto, Pablo M.
    NEURAL COMPUTING & APPLICATIONS, 2015, 26 (03): : 641 - 649
  • [29] Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling
    Riaño, D
    Meier, E
    Allgöwer, B
    Chuvieco, E
    Ustin, SL
    REMOTE SENSING OF ENVIRONMENT, 2003, 86 (02) : 177 - 186
  • [30] Augmenting Site Index Estimation with Airborne Laser Scanning Data
    Tompalski, Piotr
    Coops, Nicholas C.
    White, Joanne C.
    Wulder, Michael A.
    FOREST SCIENCE, 2015, 61 (05) : 861 - 873