SUPPORT VECTOR MACHINES REGRESSION FOR ESTIMATION OF FOREST PARAMETERS FROM AIRBORNE LASER SCANNING DATA

被引:0
|
作者
Monnet, J. -M. [1 ]
Berger, F. [1 ]
Chanussot, J. [2 ]
机构
[1] UR EMGR, 2 Rue Papeterie,BP 76, F-38402 St Martin Dheres, France
[2] Grenoble Inst Technol, GIPSA Lab, F-38402 St Martin Dheres, France
关键词
Support vector regression; airborne laser scanning; forest parameters estimation; PREDICTION;
D O I
10.1109/IGARSS.2010.5651702
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Estimation of forest stand parameters from airborne laser scanning data relies on the selection of laser metrics sets and numerous field plots for model calibration. In mountainous areas, forest is highly heterogeneous and field data collection labour-intensive hence the need for robust prediction methods. The aim of this paper is to compare stand parameters prediction accuracies of support vector machines regression and multiple regression models. Sensitivity of these techniques to the number and type of laser metrics, and use of dimension reduction techniques such as principal component and independent component analyses are also tested. Results show that support vector regression was less accurate but more stable than multiple regression for the prediction of forest parameters.
引用
收藏
页码:2711 / 2714
页数:4
相关论文
共 50 条
  • [1] Support Vector Regression for the Estimation of Forest Stand Parameters Using Airborne Laser Scanning
    Monnet, Jean-Matthieu
    Chanussot, Jocelyn
    Berger, Frederic
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (03) : 580 - 584
  • [2] Gaussian Process Regression for Forest Attribute Estimation From Airborne Laser Scanning Data
    Varvia, Petri
    Lahivaara, Timo
    Maltamo, Matti
    Packalen, Petteri
    Seppanen, Aku
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (06): : 3361 - 3369
  • [3] Estimation of Forest Stand Parameters from Airborne Laser Scanning Using Calibrated Plot Databases
    Junttila, Virpi
    Kauranne, Tuomo
    Leppanen, Vesa
    FOREST SCIENCE, 2010, 56 (03) : 257 - 270
  • [4] Estimation of fractional forest cover from airborne laser scanning data in abandoned agricultural land
    Puittaimestiku kaardistamine aerolidari andmete põhjal metsana lisanduvatel aladel
    Mõistus, Marta, 1600, Institute of Forestry and Rural Engineering (59):
  • [5] ESTIMATION OF THE PLOT-LEVEL FOREST PARAMETERS FROM TERRESTRIAL LASER SCANNING DATA
    Zhou, Junjie
    Zhou, Guiyun
    Wei, Hongqiang
    Zhang, Xiaodong
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9014 - 9017
  • [6] Data sources from airborne laser scanning applicable in forest and landscape management decision support systems
    Sackov, I.
    Smrecek, R.
    Kardos, M.
    IMPLEMENTATION OF DSS TOOLS INTO THE FORESTRY PRACTICE, 2013, : 71 - 79
  • [7] ESTIMATION OF SOIL MOISTURE FROM AIRBORNE HYPERSPECTRAL IMAGERY WITH SUPPORT VECTOR REGRESSION
    Stamenkovic, Jelena
    Tuia, Devis
    de Morsier, Frank
    Borgeaud, Maurice
    Thiran, Jean-Philippe
    2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [8] Characterization of forest edge structure from airborne laser scanning data
    Bruggisser, Moritz
    Wang, Zuyuan
    Ginzler, Christian
    Webster, Clare
    Waser, Lars T.
    ECOLOGICAL INDICATORS, 2024, 159
  • [9] A Support Vector Regression Approach to Estimate Forest Biophysical Parameters at the Object Level Using Airborne Lidar Transects and QuickBird Data
    Chen, Gang
    Hay, Geoffrey J.
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2011, 77 (07): : 733 - 741
  • [10] Indirect and direct estimation of forest biomass change using forest inventory and airborne laser scanning data
    McRoberts, Ronald E.
    Naesset, Erik
    Gobakken, Terje
    Bollandsas, Ole Martin
    REMOTE SENSING OF ENVIRONMENT, 2015, 164 : 36 - 42