Medium Entropy-Enabled High Performance Cubic GeTe Thermoelectrics

被引:92
作者
Zhi, Shizhen [1 ]
Li, Jibiao [2 ,3 ]
Hu, Lipeng [1 ]
Li, Junqin [1 ,4 ]
Li, Ning [5 ]
Wu, Haijun [5 ,6 ]
Liu, Fusheng [1 ]
Zhang, Chaohua [1 ]
Ao, Weiqin [1 ]
Xie, Heping [1 ]
Zhao, Xinbing [7 ,8 ]
Pennycook, Stephen John [5 ]
Zhu, Tiejun [7 ,8 ]
机构
[1] Shenzhen Univ, Guangdong Prov Key Lab Deep Earth Sci & Geotherma, Inst Deep Earth Sci & Green Energy,Guangdong Res, Coll Mat Sci & Engn,Shenzhen Key Lab Special Func, Shenzhen 518060, Peoples R China
[2] Yangtze Normal Univ, Ctr Mat & Energy CME, Chongqing 408100, Peoples R China
[3] Yangtze Normal Univ, Chongqing Key Lab Extraordinary Bond Engn & Adv M, Chongqing 408100, Peoples R China
[4] Southwest Univ, Inst Clean Energy & Adv Mat, Chongqing 400715, Peoples R China
[5] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117575, Singapore
[6] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[7] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[8] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
band engineering; entropy engineering; GeTe; phase transition; thermoelectric;
D O I
10.1002/advs.202100220
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The configurational entropy is an emerging descriptor in the functional materials genome. In thermoelectric materials, the configurational entropy helps tune the delicate trade-off between carrier mobility and lattice thermal conductivity, as well as the structural phase transition, if any. Taking GeTe as an example, low-entropy GeTe generally have high carrier mobility and distinguished zT > 2, but the rhombohedral-cubic phase transition restricts the applications. In contrast, despite cubic structure and ultralow lattice thermal conductivity, the degraded carrier mobility leads to a low zT in high-entropy GeTe. Herein, medium-entropy alloying is implemented to suppress the phase transition and achieve the cubic GeTe with ultralow lattice thermal conductivity yet decent carrier mobility. In addition, co-alloying of (Mn, Pb, Sb, Cd) facilitates multivalence bands convergence and band flattening, thereby yielding good Seebeck coefficients and compensating for decreased carrier mobility. For the first time, a state-of-the-art zT of 2.1 at 873 K and average zT(ave) of 1.3 between 300 and 873 K are attained in cubic phased Ge0.63Mn0.15Pb0.1Sb0.06Cd0.06Te. Moreover, a record-high Vickers hardness of 270 is attained. These results not only promote GeTe materials for practical applications, but also present a breakthrough in the burgeoning field of entropy engineering.
引用
收藏
页数:10
相关论文
共 60 条
[51]   Remarkable Roles of Cu To Synergistically Optimize Phonon and Carrier Transport in n-Type PbTe-Cu2Te [J].
Xiao, Yu ;
Wu, Haijun ;
Li, Wei ;
Yin, Meijie ;
Pei, Yanling ;
Zhang, Yang ;
Fu, Liangwei ;
Chen, Yuexing ;
Pennycook, Stephen J. ;
Huang, Li ;
He, Jiaqing ;
Zhao, Li-Dong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (51) :18732-18738
[52]   Stacking faults modulation for scattering optimization in GeTe-based thermoelectric materials [J].
Xie, Li ;
Chen, Yongjin ;
Liu, Ruiheng ;
Song, Erhong ;
Xing, Tong ;
Deng, Tingting ;
Song, Qingfeng ;
Liu, Jianjun ;
Zheng, Renkui ;
Gao, Xiang ;
Bai, Shengqiang ;
Chen, Lidong .
NANO ENERGY, 2020, 68 (68)
[53]   Superior performance and high service stability for GeTe-based thermoelectric compounds [J].
Xing, Tong ;
Song, Qingfeng ;
Qiu, Pengfei ;
Zhang, Qihao ;
Xia, Xugui ;
Liao, Jincheng ;
Liu, Ruiheng ;
Huang, Hui ;
Yang, Jiong ;
Bai, Shengqiang ;
Ren, Dudi ;
Shi, Xun ;
Chen, Lidong .
NATIONAL SCIENCE REVIEW, 2019, 6 (05) :944-954
[54]   Boosting the Thermoelectric Performance of Pseudo-Layered Sb2Te3(GeTe)n via Vacancy Engineering [J].
Xu, Xiao ;
Xie, Lin ;
Lou, Qing ;
Wu, Di ;
He, Jiaqing .
ADVANCED SCIENCE, 2018, 5 (12)
[55]   Suppression of the lattice thermal conductivity in NbFeSb-based half-Heusler thermoelectric materials through high entropy effects [J].
Yan, Jianlong ;
Liu, Fusheng ;
Ma, Guohua ;
Gong, Bo ;
Zhu, Jiaxu ;
Wang, Xiao ;
Ao, Weiqin ;
Zhang, Chaohua ;
Li, Yu ;
Li, Junqin .
SCRIPTA MATERIALIA, 2018, 157 :129-134
[56]   Se-Sm co-doping strategy for tuning the structural and thermoelectric properties of GeTe-PbTe based alloys [J].
Zhang, Chunxiao ;
Wang, Caiyan ;
Xie, Yucheng ;
Chen, Bin ;
Zhang, Chaohua .
MATERIALS & DESIGN, 2018, 157 :394-401
[57]   Science and technology in high-entropy alloys [J].
Zhang, Weiran ;
Liaw, Peter K. ;
Zhang, Yong .
SCIENCE CHINA-MATERIALS, 2018, 61 (01) :2-22
[58]   GeTe Thermoelectrics [J].
Zhang, Xinyue ;
Bu, Zhonglin ;
Lin, Siqi ;
Chen, Zhiwei ;
Li, Wen ;
Pei, Yanzhong .
JOULE, 2020, 4 (05) :986-1003
[59]   Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance [J].
Zheng, Zheng ;
Su, Xianli ;
Deng, Rigui ;
Stoumpos, Constantinos ;
Xie, Hongyao ;
Liu, Wei ;
Yan, Yonggao ;
Hao, Shiqiang ;
Uher, Ctirad ;
Wolverton, Chris ;
Kanatzidis, Mercouri G. ;
Tang, Xinfeng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (07) :2673-2686
[60]   Compromise and Synergy in High-Efficiency Thermoelectric Materials [J].
Zhu, Tiejun ;
Liu, Yintu ;
Fu, Chenguang ;
Heremans, Joseph P. ;
Snyder, Jeffrey G. ;
Zhao, Xinbing .
ADVANCED MATERIALS, 2017, 29 (14)