Preparation and Thermoelectric Properties of Zinc Antimonide

被引:2
作者
Ivanova, L. D. [1 ]
Granatkina, Yu, V [1 ]
Mal'chev, A. G. [1 ]
Nikhezina, I. Yu [1 ]
Nikulin, D. S. [1 ]
Zaldastanishvili, M., I [2 ]
Krivoruchko, S. P. [2 ]
Novin'kov, V. V. [2 ]
Shchedrov, E. R. [2 ]
机构
[1] Russian Acad Sci, Baikov Inst Met & Mat Sci, Moscow 119334, Russia
[2] Sukhumi Physicotech Inst, Kodorskoe Sh 665, Sinop, Sukhumi, Russia
关键词
zinc antimonide; melt spinning; melt solidification in a liquid; microstructure; X-ray diffraction; thermoelectric properties; thermal cycling; INTERSTITIAL ZN; ZN4SB3;
D O I
10.1134/S0020168521070177
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have demonstrated two processes for the synthesis of zinc antimonide powder using rapid melt cooling: melt spinning and cooling in a liquid. The elemental and phase compositions and surface morphology of hot-pressed undoped and 3 wt % In-doped beta-Zn4Sb3 samples have been studied by scanning electron microscopy, X-ray diffraction, and optical microscopy, and their Seebeck coefficient, electrical conductivity, and thermal conductivity have been measured in the range 300-700 K. Indium doping has been shown to reduce the lattice thermal conductivity of the material by a factor of 1.5. The 600-K thermoelectric figure of merit of the undoped sample (ZT = 0.8) is half that of the doped sample (ZT = 1.5). We have assessed the effect of thermal cycling in the range 300-700 K on the Seebeck coefficient and electrical conductivity of the samples.
引用
收藏
页码:674 / 682
页数:9
相关论文
共 13 条
  • [1] Preparation and thermoelectric properties of semiconducting Zn4Sb3
    Caillat, T
    Fleurial, JP
    Borshchevsky, A
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1997, 58 (07) : 1119 - 1125
  • [2] Interstitial Zn atoms do the trick in thermoelectric zinc antimonide, Zn4Sb3:: A combined maximum entropy method X-ray electron density and ab initio electronic structure study
    Cargnoni, F
    Nishibori, E
    Rabiller, P
    Bertini, L
    Snyder, GJ
    Christensen, M
    Gatti, C
    Iversen, BB
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2004, 10 (16) : 3861 - 3870
  • [3] Ioffe A.F., 1960, POLUPROVODNIKOVYE TE
  • [4] Preparation and Thermoelectric Properties of Microcrystalline Lead Telluride
    Ivanova, L. D.
    Granatkina, Yu. V.
    Mal'chev, A. G.
    Nikhezina, I. Yu.
    Krivoruchko, S. P.
    Zaldastanishvili, M. I.
    Vekua, T. S.
    Sudak, N. M.
    [J]. INORGANIC MATERIALS, 2020, 56 (08) : 791 - 798
  • [5] Ivanova L.D., 2020, Promising Technologies and Materials, P70
  • [6] Experimental survey of dopants in Zn13Sb10 thermoelectric material
    Lo, Chun-Wan Timothy
    Kolodiazhnyi, Taras
    Song, Shaochang
    Tseng, Yu-Chih
    Mozharivskyj, Yurij
    [J]. INTERMETALLICS, 2020, 123
  • [7] The updated Zn-Sb phase diagram. How to make pure Zn13Sb10 ("Zn4Sb3").
    Lo, Chun-Wan Timothy
    Svitlyk, Volodymyr
    Chernyshov, Dmitry
    Mozharivskyj, Yurij
    [J]. DALTON TRANSACTIONS, 2018, 47 (33) : 11512 - 11520
  • [8] Zn13Sb10:: A structural and Landau theoretical analysis of its phase transitions
    Mozharivskyj, Y
    Janssen, Y
    Harringa, JL
    Kracher, A
    Tsokol, AO
    Miller, GJ
    [J]. CHEMISTRY OF MATERIALS, 2006, 18 (03) : 822 - 831
  • [9] Preparation and Properties of Zn4Sb3-Based Thermoelectric Material
    Panchenko, V. P.
    Tabachkova, N. Yu.
    Ivanov, A. A.
    Senatulin, B. R.
    Andreev, E. A.
    [J]. SEMICONDUCTORS, 2017, 51 (06) : 714 - 717
  • [10] Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties
    Snyder, GJ
    Christensen, M
    Nishibori, E
    Caillat, T
    Iversen, BB
    [J]. NATURE MATERIALS, 2004, 3 (07) : 458 - 463