Effect of defocusing thermal nonlinearity on Gaussian beam profile in Fabry-Perot cavity

被引:0
作者
Panov, Andrey V. [1 ]
机构
[1] Inst Automat & Control Proc, Vladivostok 690041, Russia
来源
OPTIK | 2011年 / 122卷 / 01期
关键词
Nonlinear Fabry-Perot cavity; Gaussian beam; Optical thermal nonlinearity;
D O I
10.1016/j.ijleo.2009.09.014
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate numerically the steady-state transmission of a Gaussian beam through Fabry-Perot cavity containing liquid medium with the negative temperature nonlinearity. It is shown that multistability may appear in different ranges of the beam depending on the optical and geometric parameters of the resonator. (C) 2010 Elsevier GmbH. All rights reserved.
引用
收藏
页码:6 / 8
页数:3
相关论文
共 11 条
[1]   NON-LINEAR FABRY-PEROT INTERFEROMETERS [J].
ABRAHAM, E ;
SMITH, SD .
JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1982, 15 (01) :33-39
[2]   TRANSMISSION OF A GAUSSIAN-BEAM THROUGH A FABRY-PEROT-INTERFEROMETER [J].
ABUSAFIA, H ;
ALTAHTAMOUNI, R ;
ABUALJARAYESH, I ;
YUSUF, NA .
APPLIED OPTICS, 1994, 33 (18) :3805-3811
[3]   OSCILLATION AND CHAOS IN A FABRY-PEROT BISTABLE CAVITY WITH GAUSSIAN INPUT BEAM [J].
FIRTH, WJ ;
WRIGHT, EM .
PHYSICS LETTERS A, 1982, 92 (05) :211-216
[4]   LONG-TRANSIENT EFFECTS IN LASERS WITH INSERTED LIQUID SAMPLES [J].
GORDON, JP ;
LEITE, RCC ;
MOORE, RS ;
PORTO, SPS ;
WHINNERY, JR .
JOURNAL OF APPLIED PHYSICS, 1965, 36 (01) :3-&
[5]   OPTICAL TURBULENCE - CHAOTIC BEHAVIOR OF TRANSMITTED LIGHT FROM A RING CAVITY [J].
IKEDA, K ;
DAIDO, H ;
AKIMOTO, O .
PHYSICAL REVIEW LETTERS, 1980, 45 (09) :709-712
[6]   MODELING OF NONLINEAR FABRY-PEROT RESONATORS BY DIFFERENCE-DIFFERENTIAL EQUATIONS [J].
IKEDA, K ;
MIZUNO, M .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1985, 21 (09) :1429-1434
[7]   Nonlinear-optical properties of heterogeneous liquid nanophase composites based on high-energy-gap Al2O3 nanoparticles [J].
Kul'chin, Yu. N. ;
Shcherbakov, A. V. ;
Dzyuba, V. P. ;
Voznesenskiy, S. S. ;
Mikaelyan, G. T. .
QUANTUM ELECTRONICS, 2008, 38 (02) :154-158
[8]   THEORY OF A LOSSLESS NON-LINEAR FABRY-PEROT-INTERFEROMETER [J].
MARBURGER, JH ;
FELBER, FS .
PHYSICAL REVIEW A, 1978, 17 (01) :335-342
[9]  
Rosanov N. N., 2002, SPRINGER SERIES SYNE
[10]  
Thienpont H., 1993, Pure and Applied Optics, V2, P515, DOI 10.1088/0963-9659/2/5/012