COMPARISON THEOREMS FOR GROMOV-WITTEN INVARIANTS OF SMOOTH PAIRS AND OF DEGENERATIONS

被引:43
作者
Abramovich, Dan [1 ]
Marcus, Steffen [2 ]
Wise, Jonathan [3 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Univ Colorado, Dept Math, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
algberaic geometry; Gromov-Witten theory; logarithmic geometry; algebraic stacks; moduli spaces; deformation theory; FORMULA; STACKS;
D O I
10.5802/aif.2892
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider four approaches to relative Gromov-Witten theory and Gromov Witten theory of degenerations: J. Li's original approach, B. Kim's logarithmic expansions, Abramovich-Fantechi's orbifold expansions, and a logarithmic theory without expansions due to Gross-Siebert and Abramovich-Chen. We exhibit morphisms relating these moduli spaces and prove that their virtual fundamental classes are compatible by pushforward through these morphisms. This implies that the Gromov-Witten invariants associated to all four of these theories are identical.
引用
收藏
页码:1611 / 1667
页数:57
相关论文
共 37 条
[1]   Twisted bundles and admissible covers [J].
Abramovich, D ;
Corti, A ;
Vistoli, A .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (08) :3547-3618
[2]   Compactifying the space of stable maps [J].
Abramovich, D ;
Vistoli, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (01) :27-75
[3]  
Abramovich D., 2011, ARXIV11035132
[4]  
Abramovich D., 2010, ARXIV10040981
[5]  
Abramovich D., 2013, ARXIV11024531
[6]  
Abramovich D, 2008, AM J MATH, V130, P1337
[7]   Expanded Degenerations and Pairs [J].
Abramovich, Dan ;
Cadman, Charles ;
Fantechi, Barbara ;
Wise, Jonathan .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (06) :2346-2386
[8]  
Andreini E, 2011, ARXIV11015996
[9]  
[Anonymous], 1966, Inst. Hautes Etudes Sci. Publ. Math., P255
[10]  
ARTIN M., 1972, LECT NOTES MATH, V270