Targeting VEGF pathway to normalize the vasculature: an emerging insight in cancer therapy

被引:87
作者
Wu, Jing-biao [1 ]
Tang, Ya-ling [1 ]
Liang, Xin-hua [1 ]
机构
[1] Sichuan Univ, West China Hosp Stomatol, Natl Clin Res Ctr Oral Dis, State Key Lab Oral Dis, 14,Sec 3,Renminnan Rd, Chengdu 610041, Sichuan, Peoples R China
来源
ONCOTARGETS AND THERAPY | 2018年 / 11卷
基金
中国国家自然科学基金;
关键词
Vascular normalization; vascular endothelial growth factor; anti-angiogenesis; treatment resistance; cancer therapy; ENDOTHELIAL GROWTH-FACTOR; ANTI-ANGIOGENESIS THERAPY; MURAL CELL RECRUITMENT; INDUCIBLE FACTOR-I; TUMOR VASCULATURE; NITRIC-OXIDE; ANTIANGIOGENIC THERAPY; RNA INTERFERENCE; BREAST-CANCER; SOLID TUMORS;
D O I
10.2147/OTT.S172042
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Vascular normalization is a new concept of targeting angiogenesis to restore vessel structure and function and to increase blood perfiision and delivery of drugs. It has been confirmed that vascular normalization can decrease relapse and benefit other cancer therapy, including chemotherapy, radiotherapy, and inunune cell therapy. The key point of this therapy is to inhibit pro-angiogenic factors and make it be balanced with anti-angiogenic factors, resulting in a mature and normal vessel characteristic. Vascular endothelial growth factor (VEGF) is a key player in the process of tumor angiogenesis, and inhibiting VEGF is a primary approach to tumor vessel normalization. Herein, we review newly uncovered mechanisms governing angiogenesis and vascular normalization of cancer and place emphasis on targeting VEGF pathway to normalize the vascul Mitre. Also, important methods to depress VEGF pathway and make tumor vascular are discussed.
引用
收藏
页码:6901 / 6909
页数:9
相关论文
共 98 条
[1]   MicroRNA-mediated regulation of the angiogenic switch [J].
Anand, Sudarshan ;
Cheresh, David A. .
CURRENT OPINION IN HEMATOLOGY, 2011, 18 (03) :171-176
[2]  
[Anonymous], J CELL BIOCH
[3]   Ramucirumab: preclinical research and clinical development [J].
Aprile, Giuseppe ;
Rijavec, Erika ;
Fontanella, Caterina ;
Rihawi, Karim ;
Grossi, Francesco .
ONCOTARGETS AND THERAPY, 2014, 7 :1997-2006
[4]   Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma [J].
Atkins, MB ;
Hidalgo, M ;
Stadler, WM ;
Logan, TF ;
Dutcher, JP ;
Hudes, GR ;
Park, Y ;
Lion, SH ;
Marshall, B ;
Boni, JP ;
Dukart, G ;
Sherman, ML .
JOURNAL OF CLINICAL ONCOLOGY, 2004, 22 (05) :909-918
[5]   PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation [J].
Azoitei, Ninel ;
Becher, Alexander ;
Steinestel, Konrad ;
Rouhi, Arefeh ;
Diepold, Kristina ;
Genze, Felicitas ;
Simmet, Thomas ;
Seufferlein, Thomas .
MOLECULAR CANCER, 2016, 15
[6]  
Bates DO, 2002, CANCER RES, V62, P4123
[7]   Anti-angiogenesis in cancer therapy: Hercules and hydra [J].
Bellou, S. ;
Pentheroudakis, G. ;
Murphy, C. ;
Fotsis, T. .
CANCER LETTERS, 2013, 338 (02) :219-228
[8]   Modes of resistance to anti-angiogenic therapy [J].
Bergers, Gabriele ;
Hanahan, Douglas .
NATURE REVIEWS CANCER, 2008, 8 (08) :592-603
[9]   VEGF gene alternative splicing: pro- and anti-angiogenic isoforms in cancer [J].
Biselli-Chicote, P. M. ;
Oliveira, A. R. C. P. ;
Pavarino, E. C. ;
Goloni-Bertollo, E. M. .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2012, 138 (03) :363-370
[10]   Resistance and Escape From Antiangiogenesis Therapy: Clinical Implications and Future Strategies [J].
Bottsford-Miller, Justin N. ;
Coleman, Robert L. ;
Sood, Anil K. .
JOURNAL OF CLINICAL ONCOLOGY, 2012, 30 (32) :4026-4034