NECLATCLOSED: A vertical algorithm for mining frequent closed itemsets

被引:16
作者
Aryabarzan, Nader [1 ,2 ]
Minaei-Bidgoli, Behrouz [3 ]
机构
[1] Islamic Azad Univ, Dept Comp Engn, Sci & Res Branch, Tehran, Iran
[2] Islamic Azad Univ, Dept Comp Engn, Marvdasht Branch, Marvdasht, Iran
[3] Iran Univ Sci & Technol, Sch Comp Engn, Tehran, Iran
关键词
Data mining; Frequent itemset; Closed itemset; Vertical; Association rule; EFFICIENT ALGORITHM; PATTERNS;
D O I
10.1016/j.eswa.2021.114738
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Frequent closed itemsets provide a lossless and concise collection of all frequent itemsets to reduce the runtime and memory requirement of frequent itemsets mining tasks. This study presents an algorithm named NECLAT-CLOSED for fast mining of frequent closed itemsets. We introduce concepts and techniques based on the vertical database format and employ them in the mining process. The experimental results show that NECLATCLOSED outperforms the leading algorithms in terms of runtime and memory usage, especially runtime, in most cases.
引用
收藏
页数:11
相关论文
共 64 条
[1]  
Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072
[2]  
Agrawal R., 1994, P 20 INT C VER LARG, V1215, P487
[3]   A Parallel MapReduce Algorithm to Efficiently Support Itemset Mining on High Dimensional Data [J].
Apiletti, Daniele ;
Baralis, Elena ;
Cerquitelli, Tania ;
Garza, Paolo ;
Pulvirenti, Fabio ;
Michiardi, Pietro .
BIG DATA RESEARCH, 2017, 10 :53-69
[4]   negFIN: An efficient algorithm for fast mining frequent itemsets [J].
Aryabarzan, Nader ;
Minaei-Bidgoli, Behrouz ;
Teshnehlab, Mohammad .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 105 :129-143
[5]  
BAEK Y., 2020, KNOWL-BASED SYST
[6]   An efficient approach based on selective partitioning for maximal frequent itemsets mining [J].
Bai, Anita ;
Dhabu, Meera ;
Jagtap, Viraj ;
Deshpande, Parag S. .
SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2019, 44 (08)
[7]   Kavosh: an effective Map-Reduce-based association rule mining method [J].
Barkhordari, Mohammadhossein ;
Niamanesh, Mahdi .
JOURNAL OF BIG DATA, 2018, 5 (01)
[8]   DBV-Miner: A Dynamic Bit-Vector approach for fast mining frequent closed itemsets [J].
Bay Vo ;
Hong, Tzung-Pei ;
Bac Le .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (08) :7196-7206
[9]   MAFIA: A maximal frequent itemset algorithm [J].
Burdick, D ;
Calimlim, M ;
Flannick, J ;
Gehrke, J ;
Yiu, TM .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (11) :1490-1504
[10]   GMiner: A fast GPU-based frequent itemset mining method for large-scale data [J].
Chon, Kang-Wook ;
Hwang, Sang-Hyun ;
Kim, Min-Soo .
INFORMATION SCIENCES, 2018, 439 :19-38