Dynamic functional connectivity impairments in early schizophrenia and clinical high-risk for psychosis

被引:104
作者
Du, Yuhui [1 ,2 ]
Fryer, Susanna L. [3 ,4 ]
Fu, Zening [1 ]
Lin, Dongdong [1 ]
Sui, Jing [1 ,5 ,6 ]
Chen, Jiayu [1 ]
Damaraju, Eswar [1 ]
Mennigen, Eva [1 ,7 ]
Stuart, Barbara [3 ]
Loewy, Rachel L. [3 ]
Mathalon, Daniel H. [3 ,4 ]
Calhoun, Vince D. [1 ,7 ]
机构
[1] Mind Res Network, 1101 Yale Blvd NE, Albuquerque, NM 87131 USA
[2] Shanxi Univ, Sch Comp & Informat Technol, Taiyuan, Shanxi, Peoples R China
[3] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA USA
[4] San Francisco VA Healthcare Syst, Mental Hlth Serv, San Francisco, CA USA
[5] Chinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing, Peoples R China
[6] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
[7] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
基金
美国国家卫生研究院; 中国国家自然科学基金; 美国国家科学基金会;
关键词
fMRI; Dynamic functional connectivity; Connectivity state; ICA; Schizophrenia; Clinical high-risk; TIME-VARYING CONNECTIVITY; GIG-ICA APPLICATION; ULTRA-HIGH-RISK; BRAIN CONNECTIVITY; GLOBAL SIGNAL; PRODROMAL SYMPTOMS; WORKING-MEMORY; CEREBELLUM; NETWORKS; INDIVIDUALS;
D O I
10.1016/j.neuroimage.2017.10.022
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Individuals at clinical high-risk (CHR) for psychosis are characterized by attenuated psychotic symptoms. Only a minority of CHR individuals convert to full-blown psychosis. Therefore, there is a strong interest in identifying neurobiological abnormalities underlying the psychosis risk syndrome. Dynamic functional connectivity (DFC) captures time-varying connectivity over short time scales, and has the potential to reveal complex brain functional organization. Based on resting-state functional magnetic resonance imaging (fMRI) data from 70 healthy controls (HCs), 53 CHR individuals, and 58 early illness schizophrenia (ESZ) patients, we applied a novel group information guided ICA (GIG-ICA) to estimate inherent connectivity states from DFC, and then investigated group differences. We found that ESZ patients showed more aberrant connectivities and greater alterations than CHR individuals. Results also suggested that disease-related connectivity states occurred in CHR and ESZ groups. Regarding the dominant state with the highest contribution to dynamic connectivity, ESZ patients exhibited greater impairments than CHR individuals primarily in the cerebellum, frontal cortex, thalamus and temporal cortex, while CHR and ESZ populations shared common aberrances mainly in the supplementary motor area, parahippocampal gyrus and postcentral cortex. CHR-specific changes were also found in the connections between the superior frontal gyrus and calcarine cortex in the dominant state. Our findings suggest that CHR individuals generally show an intermediate functional connectivity pattern between HCs and SZ patients but also have unique connectivity alterations.
引用
收藏
页码:632 / 645
页数:14
相关论文
共 85 条
[21]   A whole brain fMRI atlas generated via spatially constrained spectral clustering [J].
Craddock, R. Cameron ;
James, G. Andrew ;
Holtzheimer, Paul E., III ;
Hu, Xiaoping P. ;
Mayberg, Helen S. .
HUMAN BRAIN MAPPING, 2012, 33 (08) :1914-1928
[22]   Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia [J].
Damaraju, E. ;
Allen, E. A. ;
Belger, A. ;
Ford, J. M. ;
McEwen, S. ;
Mathalon, D. H. ;
Mueller, B. A. ;
Pearlson, G. D. ;
Potkin, S. G. ;
Preda, A. ;
Turner, J. A. ;
Vaidya, J. G. ;
van Erp, T. G. ;
Calhoun, V. D. .
NEUROIMAGE-CLINICAL, 2014, 5 :298-308
[23]   Dynamic brain functional connectivity modulated by resting-state networks [J].
Di, Xin ;
Biswal, Bharat B. .
BRAIN STRUCTURE & FUNCTION, 2015, 220 (01) :37-46
[24]   Identifying functional network changing patterns in individuals at clinical high-risk for psychosis and patients with early illness schizophrenia: A group ICA study [J].
Du, Yuhui ;
Fryer, Susanna L. ;
Lin, Dongdong ;
Sui, Jing ;
Yu, Qingbao ;
Chen, Jiayu ;
Stuart, Barbara ;
Loewy, Rachel L. ;
Calhoun, Vince D. ;
Mathalon, Daniel H. .
NEUROIMAGE-CLINICAL, 2018, 17 :335-346
[25]   Identifying Dynamic Functional Connectivity Biomarkers Using GIG-ICA: Application to Schizophrenia, Schizoaffective Disorder, and Psychotic Bipolar Disorder [J].
Du, Yuhui ;
Pearlson, Godfrey D. ;
Lin, Dongdong ;
Sui, Jing ;
Chen, Jiayu ;
Salman, Mustafa ;
Tamminga, Carol A. ;
Ivleva, Elena I. ;
Sweeney, John A. ;
Keshavan, Matcheri S. ;
Clementz, Brett A. ;
Bustillo, Juan ;
Calhoun, Vince D. .
HUMAN BRAIN MAPPING, 2017, 38 (05) :2683-2708
[26]  
Du YH, 2015, I S BIOMED IMAGING, P478, DOI 10.1109/ISBI.2015.7163915
[27]   Interaction among subsystems within default mode network diminished in schizophrenia patients: A dynamic connectivity approach [J].
Du, Yuhui ;
Pearlson, Godfrey D. ;
Yu, Qingbao ;
He, Hao ;
Lin, Dongdong ;
Sui, Jing ;
Wu, Lei ;
Calhoun, Vince D. .
SCHIZOPHRENIA RESEARCH, 2016, 170 (01) :55-65
[28]   Group information guided ICA for fMRI data analysis [J].
Du, Yuhui ;
Fan, Yong .
NEUROIMAGE, 2013, 69 :157-197
[29]   Identification of subject specific and functional consistent ROIs using semi-supervised learning [J].
Du, Yuhui ;
Li, Hongming ;
Wu, Hong ;
Fan, Yong .
MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
[30]   Exploring neural dysfunction in 'clinical high risk' for psychosis: A quantitative review of fMRI studies [J].
Dutt, Anirban ;
Tseng, Huai-Hsuan ;
Fonville, Leon ;
Drakesmith, Mark ;
Su, Liang ;
Evans, John ;
Zammit, Stanley ;
Jones, Derek ;
Lewis, Glyn ;
David, Anthony S. .
JOURNAL OF PSYCHIATRIC RESEARCH, 2015, 61 :122-134