Autophagy and signaling: their role in cell survival and cell death

被引:951
作者
Codogno, P
Meijer, AJ
机构
[1] INSERM, U504, Inst Andre Lwoff, F-94807 Villejuif, France
[2] Univ Amsterdam, Acad Med Ctr, Dept Med Biochem, NL-1105 AZ Amsterdam, Netherlands
关键词
amino acids; macroautophagy; signal transduction; mTOR;
D O I
10.1038/sj.cdd.4401751
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Macroautophagy is a vacuolar, self-digesting mechanism responsible for the removal of long-lived proteins and damaged organelles by the lysosome. The discovery of the ATG genes has provided key information about the formation of the autophagosome, and about the role of macroautophagy in allowing cells to survive during nutrient depletion and/or in the absence of growth factors. Two connected signaling pathways encompassing class-I phosphatidylinositol 3-kinase and (mammalian) target of rapamycin play a central role in controlling macroautophagy in response to starvation. However, a considerable body of literature reports that macroautophagy is also a cell death mechanism that can occur either in the absence of detectable signs of apoptosis (via autophagic cell death) or concomitantly with apoptosis. Macroautophagy is activated by signaling pathways that also control apoptosis. The aim of this review is to discuss the signaling pathways that control macroautophagy during cell survival and cell death.
引用
收藏
页码:1509 / 1518
页数:10
相关论文
共 90 条
  • [1] Dissection of autophagosome biogenesis into distinct nucleation and expansion steps
    Abeliovich, H
    Dunn, WA
    Kim, J
    Klionsky, DJ
    [J]. JOURNAL OF CELL BIOLOGY, 2000, 151 (05) : 1025 - 1033
  • [2] Phosphoinositide 3-kinase accelerates autophagic cell death during glucose deprivation in the rat cardiomyocyte-derived cell line H9c2
    Aki, T
    Yamaguchi, K
    Fujimiya, T
    Mizukami, Y
    [J]. ONCOGENE, 2003, 22 (52) : 8529 - 8535
  • [3] The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C-elegans
    Apfeld, J
    O'Connor, G
    McDonagh, T
    DiStefano, PS
    Curtis, R
    [J]. GENES & DEVELOPMENT, 2004, 18 (24) : 3004 - 3009
  • [4] Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy
    Arad, M
    Benson, DW
    Perez-Atayde, AR
    McKenna, WJ
    Sparks, EA
    Kanter, RJ
    McGarry, K
    Seidman, JG
    Seidman, CE
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2002, 109 (03) : 357 - 362
  • [5] The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway
    Arico, S
    Petiot, A
    Bauvy, C
    Dubbelhuis, PF
    Meijer, AJ
    Codogno, P
    Ogier-Denis, E
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (38) : 35243 - 35246
  • [6] Autophagy: Dual roles in life and death?
    Baehrecke, EH
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2005, 6 (06) : 505 - 510
  • [7] The role of macroautophagy in the ageing process, anti-ageing intervention and age-associated diseases
    Bergamini, E
    Cavallini, G
    Donati, A
    Gori, Z
    [J]. INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2004, 36 (12) : 2392 - 2404
  • [8] Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability
    Beugnet, A
    Tee, AR
    Taylor, PM
    Proud, CG
    [J]. BIOCHEMICAL JOURNAL, 2003, 372 : 555 - 566
  • [9] The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes
    Blommaart, EFC
    Krause, U
    Schellens, JPM
    VreelingSindelarova, H
    Meijer, AJ
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 243 (1-2): : 240 - 246
  • [10] PHOSPHORYLATION OF RIBOSOMAL-PROTEIN S6 IS INHIBITORY FOR AUTOPHAGY IN ISOLATED RAT HEPATOCYTES
    BLOMMAART, EFC
    LUIKEN, JJFP
    BLOMMAART, PJE
    VANWOERKOM, GM
    MEIJER, AJ
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (05) : 2320 - 2326