Thermal conductivity of diamond nanowires from first principles

被引:311
|
作者
Li, Wu [1 ]
Mingo, Natalio [1 ]
Lindsay, L. [2 ]
Broido, D. A. [3 ]
Stewart, D. A. [4 ]
Katcho, N. A. [1 ]
机构
[1] CEA Grenoble, F-38000 Grenoble, France
[2] USN, Res Lab, Washington, DC 20375 USA
[3] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
[4] Cornell Univ, Cornell Nanoscale Facil, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
BOUNDARY SCATTERING REGIME; CHEMICAL-VAPOR-DEPOSITION; SILICON NANOWIRES; CARBON NANOTUBES; SIMULATION; NANORODS; GE;
D O I
10.1103/PhysRevB.85.195436
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using ab initio calculations we have investigated the thermal conductivity (kappa) of diamond nanowires, unveiling unusual features unique to this system. In sharp contrast with Si, kappa( T) of diamond nanowires as thick as 400 nm still increase monotonically with temperature up to 300 K, and room-temperature size effects are stronger than for Si. A marked dependence of kappa on the crystallographic orientation is predicted, which is apparent even at room temperature. [001] growth direction always possesses the largest. in diamond nanowires. The predicted features point to a potential use of diamond nanowires for the precise control of thermal flow in nanoscale devices.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles
    Raya-Moreno, Marti
    Aramberri, Hugo
    Antonio Seijas-Bellido, Juan
    Cartoixa, Xavier
    Rurali, Riccardo
    APPLIED PHYSICS LETTERS, 2017, 111 (03)
  • [2] Thermal conductivity in PbTe from first principles
    Romero, A. H.
    Gross, E. K. U.
    Verstraete, M. J.
    Hellman, Olle
    PHYSICAL REVIEW B, 2015, 91 (21)
  • [3] Thermal conductivity of Si nanowires: A first-principles analysis of the role of defects
    Kang, By.
    Estreicher, S. K.
    PHYSICAL REVIEW B, 2014, 89 (15)
  • [4] Prediction of thermal conductivity of diamond film by neural network based on first principles
    Wang Biao
    Ren Hai-Jie
    Cao Wen-Xin
    Hu Yan-Wei
    He Yu-Rong
    Han Jie-Cai
    Zhu Jia-Qi
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2022, 52 (09)
  • [5] Thermal conductivity of diamond under extreme pressure: A first-principles study
    Broido, D. A.
    Lindsay, L.
    Ward, A.
    PHYSICAL REVIEW B, 2012, 86 (11)
  • [6] Understanding the thermal conductivity of Diamond/Copper composites by first-principles calculations
    Chen, Liang
    Chen, Shuangtao
    Hou, Yu
    CARBON, 2019, 148 : 249 - 257
  • [7] Thermal conductivity of silicene from first-principles
    Xie, Han
    Hu, Ming
    Bao, Hua
    APPLIED PHYSICS LETTERS, 2014, 104 (13)
  • [8] Thermal Conductivity of Periclase (MgO) from First Principles
    Stackhouse, Stephen
    Stixrude, Lars
    Karki, Bijaya B.
    PHYSICAL REVIEW LETTERS, 2010, 104 (20)
  • [9] First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond?
    Lindsay, L.
    Broido, D. A.
    Reinecke, T. L.
    PHYSICAL REVIEW LETTERS, 2013, 111 (02)
  • [10] Revisiting the thermal conductivity of Si, Ge and diamond from first principles: roles of atomic mass and interatomic potential
    Guo, Guiming
    Yang, Xiaolong
    Carrete, Jesus
    Li, Wu
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (28)