A linearly computable measure of string complexity

被引:4
作者
Becher, Veronica [1 ]
Heiber, Pablo Ariel
机构
[1] Univ Buenos Aires, Dept Comp, Fac Ciencias Exactas & Nat, RA-1053 Buenos Aires, DF, Argentina
关键词
ENTROPY; VOLUME;
D O I
10.1016/j.tcs.2012.03.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a measure of string complexity, called I-complexity, computable in linear time and space. It counts the number of different substrings in a given string. The least complex strings are the runs of a single symbol, the most complex are the de Bruijn strings. Although the I-complexity of a string is not the length of any minimal description of the string, it satisfies many basic properties of classical description complexity. In particular, the number of strings with I-complexity up to a given value is bounded, and most strings of each length have high I-complexity. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 73
页数:12
相关论文
共 23 条
[1]  
Adjeroh D., 2008, The Burrows-Wheeler Transform: Data Compression, Suffix Arrays, and Pattern Matching
[2]  
Asarin E, 2009, LECT NOTES COMPUT SC, V5710, P69, DOI 10.1007/978-3-642-04081-8_6
[3]  
Asarin E, 2009, LECT NOTES COMPUT SC, V5813, P13, DOI 10.1007/978-3-642-04368-0_4
[4]   On extending de Bruijn sequences [J].
Becher, Veronica ;
Ariel Heiber, Pablo .
INFORMATION PROCESSING LETTERS, 2011, 111 (18) :930-932
[5]  
Buhrman H, 1997, LECT NOTES COMPUT SC, V1200, P105, DOI 10.1007/BFb0023452
[6]   Finite-State Complexity and the Size of Transducers [J].
Calude, Cristian S. ;
Salomaa, Kai ;
Roblot, Tania K. .
ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2010, (31) :38-47
[7]   THEORY OF PROGRAM SIZE FORMALLY IDENTICAL TO INFORMATION-THEORY [J].
CHAITIN, GJ .
JOURNAL OF THE ACM, 1975, 22 (03) :329-340
[8]   Clustering by compression [J].
Cilibrasi, R ;
Vitányi, PMB .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (04) :1523-1545
[9]  
de Bruijn N.G., 1949, PROC KONINKLIJKE NED, VA49, P758
[10]   A PSEUDORANDOM SEQUENCE - HOW RANDOM IS IT [J].
EHRENFEUCHT, A ;
MYCIELSKI, J .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :373-375