Iterative bicluster-based least square framework for estimation of missing values in microarray gene expression data

被引:40
作者
Cheng, K. O. [1 ]
Law, N. F. [1 ]
Siu, W. C. [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Dept Elect & Informat Engn, Ctr Signal Proc, Hong Kong, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Elect & Informat Engn EIE, Hong Kong, Hong Kong, Peoples R China
关键词
Missing value imputation; Biclustering; Iterative estimation; Gene expression analysis; SACCHAROMYCES-CEREVISIAE; IDENTIFICATION; CLASSIFICATION;
D O I
10.1016/j.patcog.2011.10.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
DNA microarray experiment inevitably generates gene expression data with missing values. An important and necessary pre-processing step is thus to impute these missing values. Existing imputation methods exploit gene correlation among all experimental conditions for estimating the missing values. However, related genes coexpress in subsets of experimental conditions only. In this paper, we propose to use biclusters, which contain similar genes under subset of conditions for characterizing the gene similarity and then estimating the missing values. To further improve the accuracy in missing value estimation, an iterative framework is developed with a stopping criterion on minimizing uncertainty. Extensive experiments have been conducted on artificial datasets, real microarray datasets as well as one non-microarray dataset. Our proposed biclusters-based approach is able to reduce errors in missing value estimation. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1281 / 1289
页数:9
相关论文
共 46 条
  • [1] A Bicluster-Based Sequential Interpolation Imputation Method for Estimation of Missing Values in Microarray Gene Expression Data
    Das, Chandra
    Bose, Shilpi
    Chattopadhyay, Samiran
    Chattopadhyay, Matangini
    Hossain, Alamgir
    CURRENT BIOINFORMATICS, 2017, 12 (02) : 118 - 130
  • [2] A Bicluster-Based Bayesian Principal Component Analysis Method for Microarray Missing Value Estimation
    Meng, Fanchi
    Cai, Cheng
    Yan, Hong
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2014, 18 (03) : 863 - 871
  • [3] Iterative bicluster-based Bayesian principal component analysis and least squares for missing-value imputation in microarray and RNA-sequencing data
    Soemartojo, Saskya Mary
    Siswantining, Titin
    Fernando, Yoel
    Sarwinda, Devvi
    Al-Ash, Herley Shaori
    Syarofina, Sarah
    Saputra, Noval
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (09) : 8741 - 8759
  • [4] An Iterative Locally Auto-Weighted Least Squares Method for Microarray Missing Value Estimation
    Yu, Zeng
    Li, Tianrui
    Horng, Shi-Jinn
    Pan, Yi
    Wang, Hongjun
    Jing, Yunge
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2017, 16 (01) : 21 - 33
  • [5] A weighted Local Least Squares Imputation method for missing value estimation in microarray gene expression data
    Ching, Wai-Ki
    Li, Limin
    Tsing, Nam-Kiu
    Tai, Ching-Wan
    Ng, Tuen-Wai
    Wong, Alice S.
    Cheng, Kwai-Wa
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2010, 4 (03) : 331 - 347
  • [6] A Review on Missing Value Imputation Algorithms for Microarray Gene Expression Data
    Moorthy, Kohbalan
    Mohamad, Mohd Saberi
    Deris, Safaai
    CURRENT BIOINFORMATICS, 2014, 9 (01) : 18 - 22
  • [7] A Novel Biclustering Based Missing Value Prediction Method for Microarray Gene Expression Data
    Bose, Shilpi
    Das, Chandra
    Chattopadhyay, Samiran
    PROCEEDINGS 2015 INTERNATIONAL CONFERENCE ON MAN AND MACHINE INTERFACING (MAMI), 2015,
  • [8] Multiclass Gene Selection on Microarray Data using l1-norm Least Square Regression
    Hang, Xiyi
    2009 INTERNATIONAL JOINT CONFERENCE ON BIOINFORMATICS, SYSTEMS BIOLOGY AND INTELLIGENT COMPUTING, PROCEEDINGS, 2009, : 52 - 55
  • [9] Pre-processing of microarray gene expression data for classification using adaptive feature selection and imputation of non-ignorable missing values
    Priya, R. Devi
    Sivaraj, R.
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 16 (03) : 183 - 204
  • [10] A hybrid-ensemble based framework for microarray data gene selection
    Rouhi, Amirreza
    Nezamabadi-pour, Hossein
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2018, 19 (03) : 221 - 242