Interchangeable Stage and Probe Mechanisms for Microscale Universal Mechanical Tester

被引:2
作者
Brown, Joseph J. [1 ,2 ]
Dikin, Dmitriy A. [3 ]
Ruoff, Rodney S. [4 ]
Bright, Victor M. [1 ,2 ]
机构
[1] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
[2] Univ Colorado, DARPA Ctr Nanoscale Sci & Technol Integrated Micr, Boulder, CO 80309 USA
[3] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
[4] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Assembly; compliant structure; interchangeable; microactuator; micromanipulator; universal mechanical tester; TRANSMISSION ELECTRON-MICROSCOPY; WALLED CARBON NANOTUBES; MATERIAL-TESTING-SYSTEM; IN-SITU; THIN-FILMS; MICROELECTROMECHANICAL SYSTEM; CONTROLLED PLACEMENT; FORCE SENSORS; DEFORMATION; MEMS;
D O I
10.1109/JMEMS.2011.2177071
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A microfabricated mechanical test platform has been designed, fabricated, and operated. This system consists of a reusable chip capable of large-displacement actuation, which interfaces to a test coupon chip compatible with synthesis conditions for many nanomaterials. Because only normal forces are used for mechanical interfacing, the two chips are not permanently connected, allowing exchange of the test coupon chips. The actuated test platform chip contains a thermal actuator driving a compliant displacement amplification transmission, and a bulk-micromachined well in which the test coupon chips may be placed and removed. The displacement amplification structure provides 40 mu m of output displacement, extending a probe over the well and into contact with the test coupon. The test coupon contains compliant structures that are actuated by the probe from the test platform. [2011-0279]
引用
收藏
页码:458 / 466
页数:9
相关论文
共 42 条
[1]   The Evolving Role of Experimental Mechanics in 1-D Nanostructure-Based Device Development [J].
Agrawal, R. ;
Loh, O. ;
Espinosa, H. D. .
EXPERIMENTAL MECHANICS, 2011, 51 (01) :1-9
[2]   Multiscale Experiments: State of the Art and Remaining Challenges [J].
Agrawal, R. ;
Espinosa, H. D. .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2009, 131 (04)
[3]   A miniaturized TEM nanoindenter for studying material deformation in situ [J].
Bobji, M. S. ;
Ramanujan, C. S. ;
Pethica, J. B. ;
Inkson, B. J. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (06) :1324-1329
[4]   Tensile measurement of single crystal gallium nitride nanowires on MEMS test stages [J].
Brown, J. J. ;
Baca, A. I. ;
Bertness, K. A. ;
Dikin, D. A. ;
Ruoff, R. S. ;
Bright, V. M. .
SENSORS AND ACTUATORS A-PHYSICAL, 2011, 166 (02) :177-186
[5]   Toward large-scale integration of carbon nanotubes [J].
Chung, JY ;
Lee, KH ;
Lee, JH ;
Ruoff, RS .
LANGMUIR, 2004, 20 (08) :3011-3017
[6]   Test bed for mechanical characterization of nanowires [J].
Desai, A. V. ;
Haque, M. A. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART N-JOURNAL OF NANOMATERIALS NANOENGINEERING AND NANOSYSTEMS, 2005, 219 (02) :57-65
[7]   Design and operation of a MEMS-based material testing system for nanomechanical characterization [J].
Espinosa, Horacio D. ;
Zhu, Yong ;
Moldovan, Nicolaie .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2007, 16 (05) :1219-1231
[8]   Wafer-Scale Microtensile Testing of Thin Films [J].
Gaspar, Joao ;
Schmidt, Marek E. ;
Held, Jochen ;
Paul, Oliver .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2009, 18 (05) :1062-1076
[9]  
Han JH, 2006, REV SCI INSTRUM, V77, DOI 10.1063/1.2188368
[10]   MEMS for In Situ Testing-Handling, Actuation, Loading, and Displacement Measurements [J].
Haque, M. A. ;
Espinosa, H. D. ;
Lee, H. J. .
MRS BULLETIN, 2010, 35 (05) :375-381