Notch signaling regulates neural stem cell quiescence entry and exit in Drosophila

被引:8
作者
Sood, Chhavi [1 ]
Justis, Virginia T. [1 ]
Doyle, Susan E. [1 ]
Siegrist, Sarah E. [1 ]
机构
[1] Univ Virginia, Dept Biol, Charlottesville, VA 22904 USA
来源
DEVELOPMENT | 2022年 / 149卷 / 04期
基金
美国国家卫生研究院;
关键词
Notch signaling; Neural stem cell; Quiescence; Neuroblast; Delta; Tribbles; Hippo; PI3-kinase; Dacapo; Asymmetric cell division; Cell cycle; Drosophila; CYCLE ARREST; POSTEMBRYONIC NEUROBLASTS; SELF-RENEWAL; PROLIFERATION; ACTIVATION; PROTEINS; DELTA; INHIBITION; TRANSITION; PROSPERO;
D O I
10.1242/dev.200275
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Stem cells enter and exit quiescence as part of normal developmental programs and to maintain tissue homeostasis in adulthood. Although it is clear that stem cell intrinsic and extrinsic cues, local and systemic, regulate quiescence, it remains unclear whether intrinsic and extrinsic cues coordinate to control quiescence and how cue coordination is achieved. Here, we report that Notch signaling coordinates neuroblast intrinsic temporal programs with extrinsic nutrient cues to regulate quiescence in Drosophila. When Notch activity is reduced, quiescence is delayed or altogether bypassed, with some neuroblasts dividing continuously during the embryonic-to-larval transition. During embryogenesis before quiescence, neuroblasts express Notch and the Notch ligand Delta. After division, Delta is partitioned to adjacent GMC daughters where it transactivates Notch in neuroblasts. Over time, in response to intrinsic temporal cues and increasing numbers of Delta-expressing daughters, neuroblast Notch activity increases, leading to cell cycle exit and consequently, attenuation of Notch pathway activity. Quiescent neuroblasts have low to no active Notch, which is required for exit from quiescence in response to nutrient cues. Thus, Notch signaling coordinates proliferation versus quiescence decisions.
引用
收藏
页数:10
相关论文
共 64 条
  • [11] The paradox of metabolism in quiescent stem cells
    Coller, Hilary A.
    [J]. FEBS LETTERS, 2019, 593 (20) : 2817 - 2839
  • [12] A Transient Expression of Prospero Promotes Cell Cycle Exit of Drosophila Postembryonic Neurons through the Regulation of Dacapo
    Colonques, Jordi
    Ceron, Julian
    Reichert, Heinrich
    Tejedor, Francisco J.
    [J]. PLOS ONE, 2011, 6 (04):
  • [13] A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain
    De Strooper, B
    Annaert, W
    Cupers, P
    Saftig, P
    Craessaerts, K
    Mumm, JS
    Schroeter, EH
    Schrijvers, V
    Wolfe, MS
    Ray, WJ
    Goate, A
    Kopan, R
    [J]. NATURE, 1999, 398 (6727) : 518 - 522
  • [14] Deng WM, 2001, DEVELOPMENT, V128, P4737
  • [15] The Hippo signalling pathway maintains quiescence in Drosophila neural stem cells
    Ding, Rouven
    Weynans, Kevin
    Bossing, Torsten
    Barros, Claudia S.
    Berger, Christian
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [16] Notch2 Signaling Maintains NSC Quiescence in the Murine Ventricular-Subventricular Zone
    Engler, Anna
    Rolando, Chiara
    Giachino, Claudio
    Saotome, Ichiko
    Erni, Andrea
    Brien, Callum
    Zhang, Runrui
    Zimber-Strobl, Ursula
    Radtke, Freddy
    Artavanis-Tsakonas, Spyros
    Louvi, Angeliki
    Taylor, Verdon
    [J]. CELL REPORTS, 2018, 22 (04): : 992 - 1002
  • [17] Cell and molecular biology of Notch
    Fiuza, Ulla-Maj
    Arias, Alfonso Martinez
    [J]. JOURNAL OF ENDOCRINOLOGY, 2007, 194 (03) : 459 - 474
  • [18] THE SUPPRESSOR OF HAIRLESS PROTEIN PARTICIPATES IN NOTCH RECEPTOR SIGNALING
    FORTINI, ME
    ARTAVANISTSAKONAS, S
    [J]. CELL, 1994, 79 (02) : 273 - 282
  • [19] Bidirectional Notch signaling regulates Drosophila intestinal stem cell multipotency
    Guo, Zheng
    Ohlstein, Benjamin
    [J]. SCIENCE, 2015, 350 (6263) : 927
  • [20] A Wingless and Notch double-repression mechanism regulates G1-S transition in the Drosophila wing
    Herranz, Hector
    Perez, Lidia
    Martin, Francisco A.
    Milan, Marco
    [J]. EMBO JOURNAL, 2008, 27 (11) : 1633 - 1645