Secondary Motor Cortex Transforms Spatial Information into Planned Action during Navigation

被引:23
作者
Olson, Jacob M. [1 ,2 ,3 ]
Li, Jamie K. [1 ]
Montgomery, Sarah E. [1 ,4 ,5 ]
Nitz, Douglas A. [1 ]
机构
[1] Univ Calif San Diego, Dept Cognit Sci, La Jolla, CA 92092 USA
[2] Brandeis Univ, Dept Psychol, Waltham, MA 02453 USA
[3] Brandeis Univ, Neurosci Program, Waltham, MA 02453 USA
[4] Icahn Sch Med Mt Sinai, Friedman Brain Inst, Nash Family Dept Neurosci, Dept Pharmacol Sci, New York, NY 10029 USA
[5] Icahn Sch Med Mt Sinai, Ctr Affect Neurosci, New York, NY 10029 USA
基金
美国国家科学基金会;
关键词
MEDIAL PREFRONTAL CORTEX; POSTERIOR PARIETAL CORTEX; HEAD-DIRECTION CELLS; RETROSPLENIAL CORTEX; ENTORHINAL CORTICES; REFERENCE FRAMES; NEURONS; MEMORY; MAP; CONNECTIONS;
D O I
10.1016/j.cub.2020.03.016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fluid navigation requires constant updating of planned movements to adapt to evolving obstacles and goals. For that reason, a neural substrate for navigation demands spatial and environmental information and the ability to effect actions through efferents. The secondary motor cortex (M2) is a prime candidate for this role given its interconnectivity with association cortices that encode spatial relationships and its projection to the primary motor cortex. Here, we report that M2 neurons robustly encode both planned and current left/right turning actions across multiple turn locations in a multi-route navigational task. Comparisons within a common statistical framework reveal that M2 neurons differentiate contextual factors, including environmental position, route, action sequence, orientation, and choice availability. Despite significant modulation by environmental factors, action planning, and execution are the dominant output signals of M2 neurons. These results identify the M2 as a structure integrating spatial information toward the updating of planned movements.
引用
收藏
页码:1845 / +
页数:14
相关论文
共 85 条
  • [1] Cortical Efferents of the Perirhinal, Postrhinal, and Entorhinal Cortices of the Rat
    Agster, Kara L.
    Burwell, Rebecca D.
    [J]. HIPPOCAMPUS, 2009, 19 (12) : 1159 - 1186
  • [2] Spatially Periodic Activation Patterns of Retrosplenial Cortex Encode Route Sub-spaces and Distance Traveled
    Alexander, Andrew S.
    Nitz, Douglas A.
    [J]. CURRENT BIOLOGY, 2017, 27 (11) : 1551 - +
  • [3] Retrosplenial cortex maps the conjunction of internal and external spaces
    Alexander, Andrew S.
    Nitz, Douglas A.
    [J]. NATURE NEUROSCIENCE, 2015, 18 (08) : 1143 - +
  • [4] AREA ABOVE ORDINAL DOMINANCE GRAPH AND AREA BELOW RECEIVER OPERATING CHARACTERISTIC GRAPH
    BAMBER, D
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1975, 12 (04) : 387 - 415
  • [5] Seconcary Motor Cortex: Where 'Sensory' Meets 'Motor' in the Rodent Frontal Cortex
    Barthas, Florent
    Kwan, Alex C.
    [J]. TRENDS IN NEUROSCIENCES, 2017, 40 (03) : 181 - 193
  • [6] Neural correlates for angular head velocity in the rat dorsal tegmental nucleus
    Bassett, JP
    Taube, JS
    [J]. JOURNAL OF NEUROSCIENCE, 2001, 21 (15) : 5740 - 5751
  • [7] Perirhinal firing patterns are sustained across large spatial segments of the task environment
    Bos, Jeroen J.
    Vinck, Martin
    van Mourik-Donga, Laura A.
    Jackson, Jadin C.
    Witter, Menno P.
    Pennartz, Cyriel M. A.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [8] A relationship between behavioral choice and the visual responses of neurons in macaque MT
    Britten, KH
    Newsome, WT
    Shadlen, MN
    Celebrini, S
    Movshon, JA
    [J]. VISUAL NEUROSCIENCE, 1996, 13 (01) : 87 - 100
  • [9] Burwell RD, 1998, J COMP NEUROL, V398, P179, DOI 10.1002/(SICI)1096-9861(19980824)398:2<179::AID-CNE3>3.0.CO
  • [10] 2-Y