Uniformly Nanopatterned Graphene Field-Effect Transistors with Enhanced Properties

被引:7
作者
Choi, Duyoung [1 ]
Kuru, Cihan [1 ]
Kim, Youngjin [1 ]
Kim, Gunwoo [1 ]
Kim, Taekyoung [1 ]
Chen, Renkun [1 ,2 ]
Jin, Sungho [1 ,2 ]
机构
[1] Univ Calif San Diego, Mat Sci & Engn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
来源
NANOSCALE RESEARCH LETTERS | 2015年 / 10卷
关键词
Graphene; Nanopatterned graphene; AAO; Nanopatterning; Field-effect transistor; Bandgap; RAMAN-SPECTROSCOPY; NANORIBBONS; FABRICATION; NANOMESH;
D O I
10.1186/s11671-015-0976-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have successfully fabricated and characterized highly uniform nanopatterned graphene (NPG). Thin anodized aluminum oxide nanomask was prepared by facile self-assembly technique without using polymer buffer layer, which was utilized as a direct-contact template for oxygen plasma etch to produce near-periodic, small-neck-width NPG. The NPG exhibits a homogeneous mesh structure with an average neck width as small as similar to 11 nm. The highly uniform 11-nm neck width creates a quantum confinement in NPG, which has led to a record bandgap opening of similar to 200 meV in graphene for the given level of neck width. Electronic characterization of single-layer NPG field-effect transistors (FETs) was performed, which demonstrated a high on-off switching ratio. We found that the NPG allows for experimental confirmation of the relationship between electrical conductance and bandgap. This work also demonstrates that our direct-contact, self-assembled mask lithography is a pathway for low-cost, high-throughput, large-scale nanomanufacturing of graphene nanodevices.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Epitaxial graphene field-effect transistors on silicon substrates
    Kang, Hyun-Chul
    Karasawa, Hiromi
    Miyamoto, Yu
    Handa, Hiroyuki
    Suemitsu, Tetsuya
    Suemitsu, Maki
    Otsuji, Taiichi
    SOLID-STATE ELECTRONICS, 2010, 54 (09) : 1010 - 1014
  • [32] Dynamic Gate Control of Aryldiazonium Chemistry on Graphene Field-Effect Transistors
    Bazan, Claudia M.
    Beraud, Anouk
    Nguyen, Minh
    Bencherif, Amira
    Martel, Richard
    Bouilly, Delphine
    NANO LETTERS, 2022, 22 (07) : 2635 - 2642
  • [33] Ambipolar to Unipolar Conversion in Graphene Field-Effect Transistors
    Li, Hong
    Zhang, Qing
    Liu, Chao
    Xu, Shouheng
    Gao, Pingqi
    ACS NANO, 2011, 5 (04) : 3198 - 3203
  • [34] Hybrid graphene/organic semiconductor field-effect transistors
    Ha, Tae-Jun
    Akinwande, Deji
    Dodabalapur, Ananth
    APPLIED PHYSICS LETTERS, 2012, 101 (03)
  • [35] Graphene-on-Silicon Hybrid Field-Effect Transistors
    Fomin, Mykola
    Pasadas, Francisco.
    Marin, Enrique G.
    Medina-Rull, Alberto
    Ruiz, Francisco. G.
    Godoy, Andres.
    Zadorozhnyi, Ihor
    Beltramo, Guillermo
    Brings, Fabian
    Vitusevich, Svetlana
    Offenhaeusser, Andreas
    Kireev, Dmitry
    ADVANCED ELECTRONIC MATERIALS, 2023, 9 (05)
  • [36] Electrical and Noise Characteristics of Graphene Field-Effect Transistors
    Shur, M.
    Rumyantsev, S.
    Liu, G.
    Balandin, A. A.
    2011 21ST INTERNATIONAL CONFERENCE ON NOISE AND FLUCTUATIONS (ICNF), 2011, : 145 - 149
  • [37] Electronic spin transport in graphene field-effect transistors
    Popinciuc, M.
    Jozsa, C.
    Zomer, P. J.
    Tombros, N.
    Veligura, A.
    Jonkman, H. T.
    van Wees, B. J.
    PHYSICAL REVIEW B, 2009, 80 (21)
  • [38] Fabrication of SWCNT-Graphene Field-Effect Transistors
    Xie, Shuangxi
    Jiao, Niandong
    Tung, Steve
    Liu, Lianqing
    MICROMACHINES, 2015, 6 (09): : 1317 - 1330
  • [39] Graphene-Graphite Oxide Field-Effect Transistors
    Standley, Brian
    Mendez, Anthony
    Schmidgall, Emma
    Bockrath, Marc
    NANO LETTERS, 2012, 12 (03) : 1165 - 1169
  • [40] Flexible Graphene Field-Effect Transistors for Microwave Electronics
    Meric, Inanc
    Petrone, Nicholas
    Hone, James
    Shepard, Kenneth L.
    2013 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST (IMS), 2013,