Uniformly Nanopatterned Graphene Field-Effect Transistors with Enhanced Properties

被引:7
作者
Choi, Duyoung [1 ]
Kuru, Cihan [1 ]
Kim, Youngjin [1 ]
Kim, Gunwoo [1 ]
Kim, Taekyoung [1 ]
Chen, Renkun [1 ,2 ]
Jin, Sungho [1 ,2 ]
机构
[1] Univ Calif San Diego, Mat Sci & Engn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
来源
NANOSCALE RESEARCH LETTERS | 2015年 / 10卷
关键词
Graphene; Nanopatterned graphene; AAO; Nanopatterning; Field-effect transistor; Bandgap; RAMAN-SPECTROSCOPY; NANORIBBONS; FABRICATION; NANOMESH;
D O I
10.1186/s11671-015-0976-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have successfully fabricated and characterized highly uniform nanopatterned graphene (NPG). Thin anodized aluminum oxide nanomask was prepared by facile self-assembly technique without using polymer buffer layer, which was utilized as a direct-contact template for oxygen plasma etch to produce near-periodic, small-neck-width NPG. The NPG exhibits a homogeneous mesh structure with an average neck width as small as similar to 11 nm. The highly uniform 11-nm neck width creates a quantum confinement in NPG, which has led to a record bandgap opening of similar to 200 meV in graphene for the given level of neck width. Electronic characterization of single-layer NPG field-effect transistors (FETs) was performed, which demonstrated a high on-off switching ratio. We found that the NPG allows for experimental confirmation of the relationship between electrical conductance and bandgap. This work also demonstrates that our direct-contact, self-assembled mask lithography is a pathway for low-cost, high-throughput, large-scale nanomanufacturing of graphene nanodevices.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Uniformly Nanopatterned Graphene Field-Effect Transistors with Enhanced Properties
    Duyoung Choi
    Cihan Kuru
    Youngjin Kim
    Gunwoo Kim
    Taekyoung Kim
    Renkun Chen
    Sungho Jin
    Nanoscale Research Letters, 2015, 10
  • [2] Memtransistors Based on Nanopatterned Graphene Ferroelectric Field-Effect Transistors
    Dragoman, Mircea
    Dinescu, Adrian
    Nastase, Florin
    Dragoman, Daniela
    NANOMATERIALS, 2020, 10 (07) : 1 - 7
  • [3] Optical and thermal properties of graphene field-effect transistors
    Freitag, Marcus
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (11-12): : 2895 - 2903
  • [4] Graphene field-effect transistors: the road to bioelectronics
    Donnelly, Matthew
    Mao, Dacheng
    Park, Junsu
    Xu, Guangyu
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (49)
  • [5] Effect of energetic electron irradiation on graphene and graphene field-effect transistors
    Childres, Isaac
    Foxe, Michael
    Jovanovic, Igor
    Chen, Yong P.
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS III, 2011, 8031
  • [6] Deoxyribonucleic Acid Sensitive Graphene Field-Effect Transistors
    Hwang, Jongseung
    Kim, Heetae
    Lee, Jaehyun
    Whang, Dongmok
    Hwang, Sungwoo
    IEICE TRANSACTIONS ON ELECTRONICS, 2011, E94C (05): : 826 - 829
  • [7] A review for compact model of graphene field-effect transistors
    Lu, Nianduan
    Wang, Lingfei
    Li, Ling
    Liu, Ming
    CHINESE PHYSICS B, 2017, 26 (03)
  • [8] Carbon-Dot-Enhanced Graphene Field-Effect Transistors for Ultrasensitive Detection of Exosomes
    Ramadan, Sami
    Lobo, Richard
    Zhang, Yuanzhou
    Xu, Lizhou
    Shaforost, Olena
    Tsang, Deana Kwong Hong
    Feng, Jingyu
    Yin, Tianyi
    Qiao, Mo
    Rajeshirke, Anvesh
    Jiao, Long R.
    Petrov, Peter K.
    Dunlop, Iain E.
    Titirici, Maria-Magdalena
    Klein, Norbert
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (07) : 7854 - 7864
  • [9] A review for compact model of graphene field-effect transistors
    卢年端
    汪令飞
    李泠
    刘明
    Chinese Physics B, 2017, (03) : 100 - 117
  • [10] Unusually High Optical Transparency in Hexagonal Nanopatterned Graphene with Enhanced Conductivity by Chemical Doping
    Choi, Duyoung
    Kuru, Cihan
    Choi, Chulmin
    Noh, Kunbae
    Hwang, Sookhyun
    Choi, Wonbong
    Jin, Sungho
    SMALL, 2015, 11 (26) : 3143 - 3152