Variational convergence for functionals of Ginzburg-Landau type

被引:84
作者
Alberti, G
Baldo, S
Orlandi, G
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[2] Univ Trent, Dipartimento Matemat, I-38050 Trento, Italy
[3] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
关键词
Ginzburg-Landau functional; jacobians; integral currents; flat convergence and compactness; Gamma-convergence; minimal surfaces;
D O I
10.1512/iumj.2005.54.2601
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the first part of this paper we prove that certain functionals of Ginzburg-Landau type for maps from a domain in Rn+k into R-k converge in a suitable sense to the area functional for surfaces of dimension n (Theorem 1.1). In the second part we modify this result in order to include Dirichlet boundary condition (Theorem 5.5), and, as a corollary, we show that the rescaled energy densities and the Jacobians of minimizers converge to minimal surfaces of dimension n (Corollaries 1.2 and 5.6). Some of these results were announced in [2].
引用
收藏
页码:1411 / 1472
页数:62
相关论文
共 40 条
[1]  
ALBERTI G, 1994, CR ACAD SCI I-MATH, V319, P333
[2]   Functions with prescribed singularities [J].
Alberti, G ;
Baldo, S ;
Orlandi, G .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2003, 5 (03) :275-311
[3]  
Alberti G, 2000, CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, P95
[4]  
Alberti G, 2001, BOLL UNIONE MAT ITAL, V4B, P289
[5]  
BALDO S, 1990, ANN I H POINCARE-AN, V7, P67
[6]  
Baldo S., 1999, J. Geom. Anal, V9, P547, DOI [10.1007/BF02921972, DOI 10.1007/BF02921972]
[7]   W1,p estimates for solutions to the Ginzburg-Landau equation with boundary data in H1/2 [J].
Bethuel, F ;
Bourgain, J ;
Brezis, H ;
Orlandi, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (12) :1069-1076
[8]  
BETHUEL F, 1995, ANN I H POINCARE-AN, V12, P243
[9]  
BETHUEL F, 1994, PROGR NONLINEAR DIFF, V13
[10]  
Bott R., 1982, Graduate Texts in Mathematics