Irreversible bonding of polyimide and polydimethylsiloxane (PDMS) based on a thiol-epoxy click reaction

被引:54
作者
Hoang, Michelle V. [1 ]
Chung, Hyun-Joong [1 ]
Elias, Anastasia L. [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院; 加拿大创新基金会;
关键词
microfabrication; polymer bonding; PDMS; Kapton; adhesion; peel-testing; thiol-epoxy click chemistry; FLEXIBLE ELECTRONICS; CIRCUITS; SENSOR; PACKAGE;
D O I
10.1088/0960-1317/26/10/105019
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Polyimide is one of the most popular substrate materials for the microfabrication of flexible electronics, while polydimethylsiloxane (PDMS) is the most widely used stretchable substrate/encapsulant material. These two polymers are essential in fabricating devices for microfluidics, bioelectronics, and the internet of things; bonding these materials together is a crucial challenge. In this work, we employ click chemistry at room temperature to irreversibly bond polyimide and PDMS through thiol-epoxy bonds using two different methods. In the first method, we functionalize the surfaces of the PDMS and polyimide substrates with mercaptosilanes and epoxysilanes, respectively, for the formation of a thiol-epoxy bond in the click reaction. In the second method, we functionalize one or both surfaces with mercaptosilane and introduce an epoxy adhesive layer between the two surfaces. When the surfaces are bonded using the epoxy adhesive without any surface functionalization, an extremely small peel strength (<0.01 N mm(-1)) is measured with a peel test, and adhesive failure occurs at the PDMS surface. With surface functionalization, however, remarkably higher peel strengths of similar to 0.2 N mm(-1) (method 1) and >0.3 N mm(-1) (method 2) are observed, and failure occurs by tearing of the PDMS layer. We envision that the novel processing route employing click chemistry can be utilized in various cases of stretchable and flexible device fabrication.
引用
收藏
页数:9
相关论文
共 30 条
[1]   Polymer Surface Engineering for Efficient Printing of Highly Conductive Metal Nanoparticle Inks [J].
Agina, Elena V. ;
Sizov, Alexey S. ;
Yablokov, Mikhail Yu ;
Borshchev, Oleg V. ;
Bessonov, Alexander A. ;
Kirikova, Marina N. ;
Bailey, Marc J. A. ;
Ponomarenko, Sergei A. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (22) :11755-11764
[2]   Multifunctional nano-accordion structures for stretchable transparent conductors [J].
Bagal, Abhijeet ;
Dandley, Erinn C. ;
Zhao, Junjie ;
Zhang, Xu A. ;
Oldham, Christopher J. ;
Parsons, Gregory N. ;
Chang, Chih-Hao .
MATERIALS HORIZONS, 2015, 2 (05) :486-494
[3]   Thiol-epoxy 'click' polymerization: efficient construction of reactive and functional polymers [J].
Braendle, Andreas ;
Khan, Anzar .
POLYMER CHEMISTRY, 2012, 3 (12) :3224-3227
[4]   Polysiloxane based flexible electrical-optical-circuits-board [J].
Cai, D. K. ;
Neyer, A. .
MICROELECTRONIC ENGINEERING, 2010, 87 (11) :2268-2274
[5]   ZnO nanowires-polyimide nanocomposite piezoresistive strain sensor [J].
Chen, Qian ;
Sun, Yingying ;
Wang, Ying ;
Cheng, Hongbin ;
Wang, Qing-Ming .
SENSORS AND ACTUATORS A-PHYSICAL, 2013, 190 :161-167
[6]   Determining the optimal PDMS-PDMS bonding technique for microfluidic devices [J].
Eddings, Mark A. ;
Johnson, Michael A. ;
Gale, Bruce K. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (06)
[7]   PDMS/Kapton Interface Plasma Treatment Effects on the Polymeric Package for a Wearable Thermoelectric Generator [J].
Francioso, Luca ;
De Pascali, Chiara ;
Bartali, Ruben ;
Morganti, Elisa ;
Lorenzelli, Leandro ;
Siciliano, Pietro ;
Laidani, Nadhira .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (14) :6586-6590
[8]   Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies [J].
Harris, K. D. ;
Elias, A. L. ;
Chung, H. -J. .
JOURNAL OF MATERIALS SCIENCE, 2016, 51 (06) :2771-2805
[9]   Polyimide/SU-8 catheter-tip MEMS gauge pressure sensor [J].
Hasenkamp, Willyan ;
Forchelet, David ;
Pataky, Kristopher ;
Villard, Jimmy ;
Van Lintel, Harald ;
Bertsch, Arnaud ;
Wang, Qing ;
Renaud, Philippe .
BIOMEDICAL MICRODEVICES, 2012, 14 (05) :819-828
[10]   Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering [J].
Johnston, I. D. ;
McCluskey, D. K. ;
Tan, C. K. L. ;
Tracey, M. C. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2014, 24 (03)