One-dimensional model of freely decaying two-dimensional turbulence

被引:0
作者
Campanelli, Leonardo [1 ]
机构
[1] All St Univ, Asudom Acad Sci, 5145 Steeles Ave, Toronto, ON, Canada
关键词
Two-dimensional turbulence; Shell models; Analytical methods;
D O I
10.1007/s40042-022-00437-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a discrete shell model for two-dimensional turbulence that takes into account local and nonlocal interactions between velocity modes in Fourier space. In real space, its continuous limit is described by the one-dimensional Burgers equation. We find a novel approximate scaling solution of such an equation and show that it well describes the main characteristics of the energy spectrum in fully developed, freely decaying two-dimensional turbulence.
引用
收藏
页码:972 / 980
页数:9
相关论文
共 12 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]  
Batchelor GK., 1969, PHYS FLUIDS S2, V12, P233, DOI [DOI 10.1063/1.1692443, 10.1063/1.1692443]
[3]  
Biskamp D., 2003, Magnetohydrodynamic Turbulence
[4]   Two-Dimensional Turbulence [J].
Boffetta, Guido ;
Ecke, Robert E. .
ANNUAL REVIEW OF FLUID MECHANICS, VOL 44, 2012, 44 :427-451
[5]   Dimensional analysis of two-dimensional turbulence [J].
Campanelli, Leonardo .
MODERN PHYSICS LETTERS B, 2019, 33 (19)
[6]   On the large-scale structure of homogeneous two-dimensional turbulence [J].
Davidson, P. A. .
JOURNAL OF FLUID MECHANICS, 2007, 580 :431-450
[7]  
Davidson P. A., 2004, Turbulence
[8]  
Ditlevsen P.D, 2011, Turbulence and Shell Models
[9]  
Frisch U., 2001, ARXIVNLIN0012033NLIN, P341
[10]   STATISTICAL DYNAMICS OF 2-DIMENSIONAL FLOW [J].
KRAICHNAN, RH .
JOURNAL OF FLUID MECHANICS, 1975, 67 (JAN14) :155-175