DEEP LOW-DIMENSIONAL SPECTRAL IMAGE REPRESENTATION FOR COMPRESSIVE SPECTRAL RECONSTRUCTION

被引:1
作者
Monroy, Brayan [1 ]
Bacca, Jorge [1 ]
Arguello, Henry [1 ]
机构
[1] Univ Ind Santander, Dept Comp Sci, Bucaramanga 680002, Colombia
来源
2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2021年
关键词
Compressive Spectral Imaging; Deep Learning; Recovery Problem; Dimension reduction;
D O I
10.1109/MLSP52302.2021.9596541
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Model-based deep learning techniques are the state-of-the-art in compressive spectral imaging reconstruction. These methods integrate deep neural networks (DNN) as spectral image representation used as prior information in the optimization problem, showing optimal results at the expense of increasing the dimensionality of the non-linear representation, i.e., the number of parameters to be recovered. This paper proposes an autoencoder-based network that guarantees a low-dimensional spectral representation through feature reduction, which can be used as prior in the compressive spectral imaging reconstruction. Additionally, based on the experimental observation that the obtained low dimensional spectral representation preserves the spatial structure of the scene, this work exploits the sparsity in the generated feature space by using the Wavelet basis to reduce even more the dimensionally of the inverse problem. The proposed method shows improvements up to 2 dB against state-of-the-art methods.
引用
收藏
页数:6
相关论文
共 36 条
[1]   NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image [J].
Arad, Boaz ;
Timofte, Radu ;
Ben-Shahar, Ohad ;
Lin, Yi-Tun ;
Finlayson, Graham ;
Givati, Shai ;
Li, Jiaojiao ;
Wu, Chaoxiong ;
Song, Rui ;
Li, Yunsong ;
Liu, Fei ;
Lang, Zhiqiang ;
Wei, Wei ;
Zhang, Lei ;
Nie, Jiangtao ;
Zhao, Yuzhi ;
Po, Lai-Man ;
Yan, Qiong ;
Liu, Wei ;
Lin, Tingyu ;
Kim, Youngjung ;
Shin, Changyeop ;
Rho, Kyeongha ;
Kim, Sungho ;
Zhu, Zhiyu ;
Hou, Junhui ;
Sun, He ;
Ren, Jinchang ;
Fang, Zhenyu ;
Yan, Yijun ;
Peng, Hao ;
Chen, Xiaomei ;
Zhao, Jie ;
Stiebel, Tarek ;
Koppers, Simon ;
Merhof, Dorit ;
Gupta, Honey ;
Mitra, Kaushik ;
Fubara, Biebele Joslyn ;
Sedky, Mohamed ;
Dyke, Dave ;
Banerjee, Atmadeep ;
Palrecha, Akash ;
Sabarinathan ;
Uma, K. ;
Vinothini, D. Synthiya ;
Bama, B. Sathya ;
Roomi, S. M. Md Mansoor .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :1806-1822
[2]   Compressive Coded Aperture Spectral Imaging [J].
Arce, Gonzalo R. ;
Brady, David J. ;
Carin, Lawrence ;
Arguello, Henry ;
Kittle, David S. .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :105-115
[3]  
Bacca J., 2019, IEEE INT WORKS MACH, P1, DOI DOI 10.1109/mlsp.2019.8918920
[4]   Compressive spectral image reconstruction using deep prior and low-rank tensor representation [J].
Bacca, Jorge ;
Fonseca, Yesid ;
Arguello, Henry .
APPLIED OPTICS, 2021, 60 (14) :4197-4207
[5]   Coupled deep learning coded aperture design for compressive image classification [J].
Bacca, Jorge ;
Galvis, Laura ;
Arguello, Henry .
OPTICS EXPRESS, 2020, 28 (06) :8528-8540
[6]  
Bacca Jorge, 2019, TecnoL., V22, P6, DOI 10.22430/22565337.1205
[7]   Noniterative Hyperspectral Image Reconstruction From Compressive Fused Measurements [J].
Bacca, Jorge ;
Correa, Claudia, V ;
Arguello, Henry .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (04) :1231-1239
[8]   A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration [J].
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) :2992-3004
[9]  
Borengasser M., 2007, Hyperspectral Remote Sensing: Principles and Applications
[10]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122