Hypermeander of spirals: local bifurcations and statistical properties

被引:18
作者
Ashwin, P
Melbourne, I
Nicol, M
机构
[1] Univ Exeter, Sch Math Sci, Exeter EX4 4QE, Devon, England
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
[3] Univ Surrey, Dept Math & Stat, Guildford GU2 7XH, Surrey, England
来源
PHYSICA D | 2001年 / 156卷 / 3-4期
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
hypermeander; bifurcation; center bundle; spiral wave; deterministic Brownian motion; invariance principle;
D O I
10.1016/S0167-2789(01)00296-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In both experimental studies and numerical simulations of waves in excitable media, rigidly rotating spiral waves are observed to undergo transitions to complicated spatial dynamics with long-term Brownian-like motion of the spiral tip. This phenomenon is known as hypermeander. In this paper, we review a number of recent results on dynamics with noncompact group symmetries and make the case that hypermeander may occur at a codimension two bifurcation from a rigidly rotating spiral wave. Our predictions are based on center bundle reduction (Sandstede, Scheel and Wulff), and on central limit theorems and invariance principles for group extensions of hyperbolic dynamical systems. These predictions are confirmed by numerical simulations of the center bundle equations. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:364 / 382
页数:19
相关论文
共 48 条
  • [1] [Anonymous], MEMOIRS AM MATH SOC
  • [2] Drift bifurcations of relative equilibria and transitions of spiral waves
    Ashwin, P
    Melbourne, I
    Nicol, M
    [J]. NONLINEARITY, 1999, 12 (04) : 741 - 755
  • [3] Noncompact drift for relative equilibria and relative periodic orbits
    Ashwin, P
    Melbourne, I
    [J]. NONLINEARITY, 1997, 10 (03) : 595 - 616
  • [4] ASHWIN P, 2000, P INT C DIFF EQ EQ 9, P145
  • [5] EUCLIDEAN SYMMETRY AND THE DYNAMICS OF ROTATING SPIRAL WAVES
    BARKLEY, D
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (01) : 164 - 167
  • [6] SPIRAL-WAVE DYNAMICS IN A SIMPLE-MODEL OF EXCITABLE MEDIA - THE TRANSITION FROM SIMPLE TO COMPOUND ROTATION
    BARKLEY, D
    KNESS, M
    TUCKERMAN, LS
    [J]. PHYSICAL REVIEW A, 1990, 42 (04): : 2489 - 2492
  • [7] Spiral wave meander and symmetry of the plane
    Biktashev, VN
    Holden, AV
    Nikolaev, EV
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (12A): : 2433 - 2440
  • [8] Deterministic Brownian motion in the hypermeander of spiral waves
    Biktashev, VN
    Holden, AV
    [J]. PHYSICA D, 1998, 116 (3-4): : 342 - 354
  • [9] Billingsley P, 1968, CONVERGE PROBAB MEAS
  • [10] Bowen R., 1975, LECT NOTES MATH, V470