FLUCTUATIONS OF EIGENVALUES OF RANDOM NORMAL MATRICES

被引:101
作者
Ameur, Yacin [1 ]
Hedenmalm, Hakan [2 ]
Makarov, Nikolai [3 ]
机构
[1] Lulea Univ Technol, Dept Math, S-97187 Lulea, Sweden
[2] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
[3] CALTECH, Dept Math, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
LIMIT; ZEROS; FUNCTIONALS;
D O I
10.1215/00127094-1384782
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider a fairly general potential in the plane and the corresponding Boltzmann-Gibbs distribution of eigenvalues of random normal matrices. As the order of the matrices tends to infinity, the eigenvalues condensate on a certain compact subset of the plane-the "droplet." We prove that fluctuations of linear statistics of eigenvalues of random normal matrices converge on compact subsets of the interior of the droplet to a Gaussian field, and we discuss various ramifications of this result.
引用
收藏
页码:31 / 81
页数:51
相关论文
共 33 条
  • [1] Ameur Y., RANDOM NORMAL UNPUB
  • [2] Berezin Transform in Polynomial Bergman Spaces
    Ameur, Yacin
    Hedenmalm, Hakan
    Makarov, Nikolai
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (12) : 1533 - 1584
  • [3] A CLT for a band matrix model
    Anderson, GW
    Zeitouni, O
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2006, 134 (02) : 283 - 338
  • [4] [Anonymous], 2001, Math. Sci. Res. Inst. Publ.
  • [5] Bai ZD, 2004, ANN PROBAB, V32, P553
  • [6] Berman R. J., ARXIV08113341V1
  • [7] A direct approach to Bergman kernel asymptotics for positive line bundles
    Berman, Robert
    Berndtsson, Bo
    Sjostrand, Johannes
    [J]. ARKIV FOR MATEMATIK, 2008, 46 (02): : 197 - 217
  • [8] Bergman Kernels for Weighted Polynomials and Weighted Equilibrium Measures of Cn
    Berman, Robert J.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) : 1921 - 1946
  • [9] Universality and scaling of correlations between zeros on complex manifolds
    Bleher, P
    Shiffman, B
    Zelditch, S
    [J]. INVENTIONES MATHEMATICAE, 2000, 142 (02) : 351 - 395
  • [10] Charalambides CA., 2002, Enumerative combinatorics