Webly-supervised learning for salient object detection

被引:20
|
作者
Luo, Ao [1 ]
Li, Xin [2 ]
Yang, Fan [2 ]
Jiao, Zhicheng [3 ]
Cheng, Hong [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu 611731, Peoples R China
[2] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[3] Univ N Carolina, Chapel Hill, NC 27599 USA
关键词
Salient object detection; Webly-supervised learning; Deep learning; OPTIMIZATION; FRAMEWORK; FUSION;
D O I
10.1016/j.patcog.2020.107308
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
End-to-end training of a deep CNN-Based model for salient object detection usually requires a huge number of training samples with pixel-level annotations, which are costly and time-consuming to obtain. In this paper, we propose an approach that can utilize large amounts of web data for learning a deep salient object detection model. With thousands of images collected from the Web, we first employ several bottom-up saliency detection techniques to generate salient object masks for all images, and then use a novel quality evaluation method to pick out a subset of images with reliable masks for training. After that, we develop a self-training approach to boost the performance of our initial network, which iterates between the network training process and the training set updating process. Importantly, different from existing webly-supervised or weakly-supervised methods, our approach is able to automatically select reliable images for network training without requiring any human intervention (e.g., dividing images into different difficulty levels). Results of extensive experiments on several widely-used benchmarks demonstrate that our method has achieved state-of-the-art performance. It significantly outperforms existing unsupervised and weakly-supervised salient object detection methods, and achieves competitive or even better performance than fully supervised approaches. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Weakly Supervised Salient Object Detection by Hierarchically Enhanced Scribbles
    Wang, Xiongying
    Al-Huda, Zaid
    Peng, Bo
    Tang, Xin
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (02)
  • [32] Joint learning of foreground, background and edge for salient object detection
    Wu, Qin
    Zhu, Pengcheng
    Chai, Zhilei
    Guo, Guodong
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 240
  • [33] Residual attentive feature learning network for salient object detection
    Zhang, Qing
    Shi, Yanjiao
    Zhang, Xueqin
    Zhang, Liqian
    NEUROCOMPUTING, 2022, 501 : 741 - 752
  • [34] Salient Object Detection Using Reciprocal Learning
    Wu, Junjie
    Xia, Changqun
    Yu, Tianshu
    He, Zhentao
    Li, Jia
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 281 - 293
  • [35] Salient Object Detection via Integrity Learning
    Zhuge, Mingchen
    Fan, Deng-Ping
    Liu, Nian
    Zhang, Dingwen
    Xu, Dong
    Shao, Ling
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3738 - 3752
  • [36] Category-Aware Saliency Enhance Learning Based on CLIP for Weakly Supervised Salient Object Detection
    Zhang, Yunde
    Zhang, Zhili
    Liu, Tianshan
    Kong, Jun
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [37] Category-Aware Saliency Enhance Learning Based on CLIP for Weakly Supervised Salient Object Detection
    Yunde Zhang
    Zhili Zhang
    Tianshan Liu
    Jun Kong
    Neural Processing Letters, 56
  • [38] Salient Object Detection: A Benchmark
    Borji, Ali
    Cheng, Ming-Ming
    Jiang, Huaizu
    Li, Jia
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 5706 - 5722
  • [39] Weakly Supervised Video Salient Object Detection via Point Supervision
    Gao, Shuyong
    Xing, Haozhe
    Zhang, Wei
    Wang, Yan
    Guo, Qianyu
    Zhang, Wenqiang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3656 - 3665
  • [40] Weakly-Supervised Salient Object Detection With Saliency Bounding Boxes
    Liu, Yuxuan
    Wang, Pengjie
    Cao, Ying
    Liang, Zijian
    Lau, Rynson W. H.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4423 - 4435