Enhanced terahertz detection of multigate graphene nanostructures

被引:37
作者
Delgado-Notario, Juan A. [1 ]
Knap, Wojciech [1 ]
Clerico, Vito [2 ]
Salvador-Sanchez, Juan [2 ]
Calvo-Gallego, Jaime [2 ]
Taniguchi, Takashi [3 ]
Watanabe, Kenji [4 ]
Otsuji, Taiichi [5 ]
Popov, Vyacheslav V. [6 ]
Fateev, Denis V. [6 ]
Diez, Enrique [2 ]
Velazquez-Perez, Jesus E. [2 ]
Meziani, Yahya M. [2 ]
机构
[1] Polish Acad Sci, Inst High Pressure Phys, CENTERA Labs, 29-37 Sokolowska Str, Warsaw, Poland
[2] Univ Salamanca, Nanotechnol Grp, USAL Nanolab, Plaza Merced,Edificio Trilingue, Salamanca 37008, Spain
[3] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[4] Natl Inst Mat Sci, Funct Mat Res Ctr, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[5] Tohoku Univ, Elect Commun Res Inst, Sendai, Miyagi 9808577, Japan
[6] Russian Acad Sci, Kotelnikov Inst Radio Engn & Elect, Saratov Branch, Saratov 410019, Russia
关键词
2D materials; field effect transistor; graphene; nano-photodetector; plasmonics; terahertz;
D O I
10.1515/nanoph-2021-0573
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Terahertz (THz) waves have revealed a great potential for use in various fields and for a wide range of challenging applications. High-performance detectors are, however, vital for exploitation of THz technology. Graphene plasmonic THz detectors have proven to be promising optoelectronic devices, but improving their performance is still necessary. In this work, an asymmetric-dual-grating-gate graphene-terahertz-field-effect-transistor with a graphite back-gate was fabricated and characterized under illumination of 0.3 THz radiation in the temperature range from 4.5 K up to the room temperature. The device was fabricated as a sub-THz detector using a heterostructure of h-BN/Graphene/h-BN/Graphite to make a transistor with a double asymmetric-grating-top-gate and a continuous graphite back-gate. By biasing the metallic top-gates and the graphite back-gate, abrupt n(+)n (or p(+)p) or np (or pn) junctions with different potential barriers are formed along the graphene layer leading to enhancement of the THz rectified signal by about an order of magnitude. The plasmonic rectification for graphene containing np junctions is interpreted as due to the plasmonic electron-hole ratchet mechanism, whereas, for graphene with n(+)n junctions, rectification is attributed to the differential plasmonic drag effect. This work shows a new way of responsivity enhancement and paves the way towards new record performances of graphene THz nano-photodetectors.
引用
收藏
页码:519 / 529
页数:11
相关论文
共 47 条
[1]   Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors [J].
Bandurin, D. A. ;
Gayduchenko, I. ;
Cao, Y. ;
Moskotin, M. ;
Principi, A. ;
Grigorieva, I. V. ;
Goltsman, G. ;
Fedorov, G. ;
Svintsov, D. .
APPLIED PHYSICS LETTERS, 2018, 112 (14)
[2]   Resonant terahertz detection using graphene plasmons [J].
Bandurin, Denis A. ;
Svintsov, Dmitry ;
Gayduchenko, Igor ;
Xu, Shuigang G. ;
Principi, Alessandro ;
Moskotin, Maxim ;
Tretyakov, Ivan ;
Yagodkin, Denis ;
Zhukov, Sergey ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Grigorieva, Irina V. ;
Polini, Marco ;
Goltsman, Gregory N. ;
Geim, Andre K. ;
Fedorov, Georgy .
NATURE COMMUNICATIONS, 2018, 9
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[4]   Room-Temperature Amplification of Terahertz Radiation by Grating-Gate Graphene Structures [J].
Boubanga-Tombet, Stephane ;
Knap, Wojciech ;
Yadav, Deepika ;
Satou, Akira ;
But, Dmytro B. ;
Popov, Vyacheslav V. ;
Gorbenko, Ilya V. ;
Kachorovskii, Valentin ;
Otsuji, Taiichi .
PHYSICAL REVIEW X, 2020, 10 (03)
[5]   THz-circuits driven by photo-thermoelectric, gate-tunable graphene-junctions [J].
Brenneis, Andreas ;
Schade, Felix ;
Drieschner, Simon ;
Heimbach, Florian ;
Karl, Helmut ;
Garrido, Jose A. ;
Holleitner, Alexander W. .
SCIENTIFIC REPORTS, 2016, 6
[6]   Fast and Sensitive Terahertz Detection Using an Antenna-Integrated Graphene pn Junction [J].
Castilla, Sebastian ;
Terres, Bernat ;
Autore, Marta ;
Viti, Leonardo ;
Li, Jian ;
Nikitin, Alexey Y. ;
Vangelidis, Ioannis ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Lidorikis, Elefterios ;
Vitiello, Miriam S. ;
Hillenbrand, Rainer ;
Tielrooij, Klaas-Jan ;
Koppen, Frank H. L. .
NANO LETTERS, 2019, 19 (05) :2765-2773
[7]   Quantum nanoconstrictions fabricated by cryo-etching in encapsulated graphene [J].
Clerico, V ;
Delgado-Notario, J. A. ;
Saiz-Bretin, M. ;
Malyshev, A., V ;
Meziani, Y. M. ;
Hidalgo, P. ;
Mendez, B. ;
Amado, M. ;
Dominguez-Adame, F. ;
Diez, E. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[8]   Grating diffraction effects in the THz domain [J].
Coutaz, JL ;
Garet, F ;
Bonnet, E ;
Tishchenko, AV ;
Parriaux, O ;
Nazarov, M .
ACTA PHYSICA POLONICA A, 2005, 107 (01) :26-37
[9]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[10]   Asymmetric dual-grating gates graphene FET for detection of terahertz radiations [J].
Delgado-Notario, J. A. ;
Clerico, V. ;
Diez, E. ;
Velazquez-Perez, J. E. ;
Taniguchi, T. ;
Watanabe, K. ;
Otsuji, T. ;
Meziani, Y. M. .
APL PHOTONICS, 2020, 5 (06)