Simple Matrix - A Multivariate Public Key Cryptosystem (MPKC) for Encryption

被引:19
作者
Tao, Chengdong [1 ]
Xiang, Hong [2 ]
Petzoldt, Albrecht [3 ]
Ding, Jintai [2 ,4 ]
机构
[1] S China Univ Technol, Guangzhou, Guangdong, Peoples R China
[2] Chongqing Univ, Chongqing, Peoples R China
[3] Tech Univ Darmstadt, Darmstadt, Germany
[4] Univ Cincinnati, Cincinnati, OH 45221 USA
关键词
Multivariate cryptography; Public key cryptography; Encryption schemes; Rank attacks; DIGITAL-SIGNATURES; SCHEME; CRYPTANALYSIS; RAINBOW;
D O I
10.1016/j.ffa.2015.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multivariate cryptography is one of the main candidates to guarantee the security of communication in the presence of quantum computers. While there exist a large number of secure and efficient multivariate signature schemes, the number of practical multivariate encryption schemes is somewhat limited. In this paper we present our results on creating a new multivariate encryption scheme, which is an extension of the original Simple Matrix encryption scheme of PQCrypto 2013. Our scheme allows fast en- and decryption and resists all known attacks against multivariate cryptosystems. Furthermore, we present a new idea to solve the decryption failure problem of the original Simple Matrix encryption scheme. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:352 / 368
页数:17
相关论文
共 22 条
[1]  
[Anonymous], [No title captured]
[2]  
Bernstein D., 2009, POSTQUANTUM CRYPTOGR
[3]  
Bogdauov A, 2008, LECT NOTES COMPUT SC, V5154, P45
[4]  
Chen AIT, 2009, LECT NOTES COMPUT SC, V5747, P33
[5]  
Coppersmith D., 1993, ANN INT CRYPTOLOGY C, P435
[6]  
Ding J., 2006, Multivariate Public Key Cryptosystems
[7]  
Ding JT, 2008, LECT NOTES COMPUT SC, V5037, P242, DOI 10.1007/978-3-540-68914-0_15
[8]  
Ding JT, 2007, LECT NOTES COMPUT SC, V4450, P233
[9]  
Ding JT, 2005, LECT NOTES COMPUT SC, V3531, P164
[10]   A new efficient algorithm for computing Grobner bases (F4) [J].
Faugére, JC .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 139 (1-3) :61-88