Lp-bounds for the Beurling-Ahlfors transform

被引:56
作者
Banuelos, Rodrigo [1 ]
Janakiraman, Prabhu [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.1090/S0002-9947-08-04537-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B denote the Beurling-Ahlfors transform de. ned on L-p(C), 1 < p < infinity. The celebrated conjecture of T. Iwaniec states that its L-p norm parallel to B parallel to(p) = p*- 1 where p* = max{p, p/p-1}. In this paper the new upper estimate parallel to B parallel to(p) <= 1.575 ( p* - 1), 1 < p < infinity, is found.
引用
收藏
页码:3603 / 3612
页数:10
相关论文
共 19 条
[1]   AREA DISTORTION OF QUASI-CONFORMAL MAPPINGS [J].
ASTALA, K .
ACTA MATHEMATICA, 1994, 173 (01) :37-60
[2]   Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms [J].
Banuelos, R ;
Wang, G .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (03) :575-600
[3]  
Bañuelos R, 2003, INDIANA U MATH J, V52, P981
[4]   BOUNDARY-VALUE-PROBLEMS AND SHARP INEQUALITIES FOR MARTINGALE TRANSFORMS [J].
BURKHOLDER, DL .
ANNALS OF PROBABILITY, 1984, 12 (03) :647-702
[5]   A PROOF OF PELCZYNSKI CONJECTURE FOR THE HAAR SYSTEM [J].
BURKHOLDER, DL .
STUDIA MATHEMATICA, 1988, 91 (01) :79-83
[6]  
BURKHOLDER DL, 1988, ASTERISQUE, P75
[7]   The best constant in the Davis inequality for the expectation of the martingale square function [J].
Burkholder, DL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (01) :91-105
[8]  
BURKHOLDER DL, 1991, LECT NOTES MATH, V1464, P2
[9]   AN ELEMENTARY PROOF OF AN INEQUALITY OF PALEY,R.E.A.C. [J].
BURKHOLDER, DL .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1985, 17 (SEP) :474-478
[10]   STRONG DIFFERENTIAL SUBORDINATION AND STOCHASTIC INTEGRATION [J].
BURKHOLDER, DL .
ANNALS OF PROBABILITY, 1994, 22 (02) :995-1025