Influence of bio-inspired flow channel designs on the performance of a PEM fuel cell

被引:44
作者
Badduri, Srinivasa Reddy [1 ]
Srinivasulu, G. Naga [1 ]
Rao, S. Srinivasa [1 ]
机构
[1] Dept Mech Engn, NIT, Warangal 506004, Telangana, India
关键词
PEMFC; Interdigitated leaf channel design; Bio-inspired flow field design; Operating temperature; Relative humidity; TRANSPORT PHENOMENA; FIELD; TEMPERATURE; ACTIVATION; LAYER;
D O I
10.1016/j.cjche.2019.07.010
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Performance of the proton exchange membrane fuel cell (PEMFC) is appreciably affected by the channel geometry. The branching structure of a plant leaf and human lung is an efficient network to distribute the nutrients in the respective systems. The same nutrient transport system can be mimicked in the flow channel design of a PEMFC, to aid even reactant distribution and better water management. In this work, the effect of bio-inspired flow field designs such as lung and leaf channel design bipolar plates, on the performance of a PEMFC was examined experimentally at various operating conditions. A PEMFC of 49 cm(2) area, with a Nafion 212 membrane with a 40% catalyst loading of 0.4 mg.cm(-2) on the anode side and also 0.6 mg.cm(-2) on the cathode side is assembled by incorporating the bio-inspired channel bipolar plate, and was tested on a programmable fuel-cell test station. The impact of the working parameters like reactants' relative humidity (RH), back pressure and fuel cell temperature on the performance of the fuel cell was examined; the operating pressure remains constant at 0.1 MPa. It was observed that the best performance was attained at a back pressure of 0.3MPa, 75 degrees C operating temperature and 100% RH. The three flow channels were also compared at different operating pressures ranging from 0.1 MPa to 0.3 MPa, and the other parameters such as operating temperature, RH and back pressure were set as 75 degrees C, 100% and 0.3 MPa. The experimental outcomes of the PEMFC with bio-inspired channels were compared with the experimental results of a conventional triple serpentine flow field. It was observed that among the different flow channel designs considered, the leaf channel design gives the best output in terms of power density. Further, the experimental results of the leaf channel design were compared with those of the interdigitated leaf channel design. The PEMFC with the interdigitated leaf channel design was found to generate 6.72% more power density than the non-interdigitated leaf channel design. The fuel cell with interdigitated leaf channel design generated 5.58% more net power density than the fuel cell with non-interdigitated leaf channel design after considering the parasitic losses. (C) 2019 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved.
引用
收藏
页码:824 / 831
页数:8
相关论文
共 26 条
[1]   Detailed analysis of polymer electrolyte membrane fuel cell with enhanced cross-flow split serpentine flow field design [J].
Abdulla, Sheikh ;
Patnaikuni, Venkata Suresh .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (07) :2806-2820
[2]   Tuning hydrophobic-hydrophilic balance of cathode catalyst layer to improve cell performance of proton exchange membrane fuel cell (PEMFC) by mixing polytetrafluoroethylene (PTFE) [J].
Chi, Bin ;
Hou, Sanying ;
Liu, Guangzhi ;
Deng, Yijie ;
Zeng, Jianghuang ;
Song, Huiyu ;
Liao, Shijun ;
Ren, Jianwei .
ELECTROCHIMICA ACTA, 2018, 277 :110-115
[3]   Transport phenomena of convergent and divergent serpentine flow fields for PEMFC [J].
Chowdhury, Mohammad Ziauddin ;
Timurkutluk, Bora .
ENERGY, 2018, 161 :104-117
[4]   Experimental investigation of an adsorptive thermal energy storage [J].
Dawoud, B. ;
Amer, E. -H. ;
Gross, D. -M. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2007, 31 (02) :135-147
[5]   An investigation into the use of additive manufacture for the production of metallic bipolar plates for polymer electrolyte fuel cell stacks [J].
Dawson, Richard J. ;
Patel, Anant J. ;
Rennie, Allan E. W. ;
White, Simon .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2015, 45 (07) :637-645
[6]   Experimental investigation of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells [J].
Heidary, Hadi ;
Kermani, Mohammad J. ;
Advani, Suresh G. ;
Prasad, Ajay K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (16) :6885-6893
[7]   The effect of serpentine flow-field designs on PEM fuel cell performance [J].
Jeon, D. H. ;
Greenway, S. ;
Shimpalee, S. ;
Van Zee, J. W. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (03) :1052-1066
[8]   The effect of anode bed geometry on the hydraulic behaviour of PEM fuel cells [J].
Karvelas, E. G. ;
Koubogiannis, D. G. ;
Hatziapostolou, A. ;
Sarris, I. E. .
RENEWABLE ENERGY, 2016, 93 :269-279
[9]   Effects of cathode operating conditions on performance of a PEM fuel cell with interdigitated flow fields [J].
Kazim, A ;
Forges, P ;
Liu, HT .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2003, 27 (04) :401-414
[10]   Electrode for proton exchange membrane fuel cells: A review [J].
Majlan, E. H. ;
Rohendi, D. ;
Daud, W. R. W. ;
Husaini, T. ;
Haque, M. A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 89 :117-134