Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells

被引:328
作者
Benton, R
St Johnston, D [1 ]
机构
[1] Univ Cambridge, Wellcome Trust Canc Res UK Inst, Cambridge CB2 1QR, England
[2] Univ Cambridge, Dept Genet, Cambridge CB2 1QR, England
基金
英国惠康基金;
关键词
D O I
10.1016/S0092-8674(03)00938-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
PAR-1 kinases are required for polarity in diverse cell types, such as epithelial cells, where they localize laterally. PAR-1 activity is believed to be transduced by binding of 14-3-3 proteins to its phosphorylated substrates, but the relevant targets are unknown. We show that PAR-1 phosphorylates Bazooka/PAR-3 on two conserved serines to generate 14-3-3 binding sites. This inhibits formation of the Bazooka/PAR-6/ aPKC complex by blocking Bazooka oligomerization and binding to aPKC. In epithelia, this complex localizes apically and defines the apical membrane, whereas Bazooka lacking PAR-1 phosphorylation/14-3-3 binding sites forms ectopic lateral complexes. Lateral exclusion by PAR-1/14-3-3 cooperates with apical anchoring by Crumbs/Stardust to restrict Bazooka localization, and loss of both pathways disrupts epithelial polarity. PAR-1 also excludes Bazooka from the posterior of the oocyte, and disruption of this regulation causes anterior-posterior polarity defects. Thus, antagonism of Bazooka by PAR-1/14-3-3 may represent a general mechanism for establishing complementary cortical domains in polarized cells.
引用
收藏
页码:691 / 704
页数:14
相关论文
共 53 条
[1]   Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity [J].
Bachmann, A ;
Schneider, M ;
Theilenberg, E ;
Grawe, F ;
Knust, E .
NATURE, 2001, 414 (6864) :638-643
[2]   A conserved oligomerization domain in Drosophila Bazooka/PAR-3 is important for apical localization and epithelial polarity [J].
Benton, R ;
St Johnston, D .
CURRENT BIOLOGY, 2003, 13 (15) :1330-1334
[3]   Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation [J].
Benton, R ;
Palacios, IM ;
St Johnston, D .
DEVELOPMENTAL CELL, 2002, 3 (05) :659-671
[4]   Discs lost, a novel multi-PDZ domain protein, establishes and maintains epithelial polarity [J].
Bhat, MA ;
Izaddoost, S ;
Lu, Y ;
Cho, KO ;
Choi, KW ;
Bellen, HJ .
CELL, 1999, 96 (06) :833-845
[5]   Integrated activity of PDZ protein complexes regulates epithelial polarity [J].
Bilder, D ;
Schober, M ;
Perrimon, N .
NATURE CELL BIOLOGY, 2003, 5 (01) :53-58
[6]   Localization of apical epithelial determinants by the basolateral PDZ protein Scribble [J].
Bilder, D ;
Perrimon, N .
NATURE, 2000, 403 (6770) :676-680
[7]   Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors [J].
Bilder, D ;
Li, M ;
Perrimon, N .
SCIENCE, 2000, 289 (5476) :113-116
[8]   Mammalian homologues of C-elegans PAR-1 are asymmetrically localized in epithelial cells and may influence their polarity [J].
Bohm, H ;
Brinkmann, V ;
Drab, M ;
Henske, A ;
Kurzchalia, TV .
CURRENT BIOLOGY, 1997, 7 (08) :603-606
[9]   Apical complex genes control mitotic spindle geometry and relative size of daughter cells in Drosophila neuroblast and pl asymmetric divisions [J].
Cai, Y ;
Yu, FW ;
Lin, SP ;
Chia, W ;
Yang, XH .
CELL, 2003, 112 (01) :51-62
[10]   TRANSIENT POSTERIOR LOCALIZATION OF A KINESIN FUSION PROTEIN REFLECTS ANTEROPOSTERIOR POLARITY OF THE DROSOPHILA OOCYTE [J].
CLARK, I ;
GINIGER, E ;
RUOHOLABAKER, H ;
JAN, LY ;
JAN, YN .
CURRENT BIOLOGY, 1994, 4 (04) :289-300