A stabilized Lagrange multiplier finite-element method for flow in porous media with fractures

被引:18
作者
Koeppel, Markus [1 ]
Martin, Vincent [2 ]
Roberts, Jean E. [3 ]
机构
[1] Univ Stuttgart, IANS, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[2] UTC, LMAC, Rue Docteur Schweitzer CS 60319, F-60203 Compiegne, France
[3] INRIA Paris, 2 Rue Simone Iff, F-75589 Paris, France
关键词
Discrete fracture model; Finite element method; Stabilized Lagrange multiplier method; Penalization; Nonconforming grids; DISCRETE-FRACTURE; 2-PHASE FLOW; MODELING FRACTURES; DISCRETIZATION; INTERFACES; MATRIX;
D O I
10.1007/s13137-019-0117-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we introduce a stabilized, numerical method for a multidimensional, discrete-fracture model (DFM) for single-phase Darcy flow in fractured porous media. In the model, introduced in an earlier work, flow in the (n-1)-dimensional fracture domain is coupled with that in the n-dimensional bulk or matrix domain by the use of Lagrange multipliers. Thus the model permits a finite element discretization in which the meshes in the fracture and matrix domains are independent so that irregular meshing and in particular the generation of small elements can be avoided. In this paper we introduce in the numerical formulation, which is a saddle-point problem based on a primal, variational formulation for flow in the matrix domain and in the fracture system, a weakly consistent stabilizing term which penalizes discontinuities in the Lagrange multipliers. For this penalized scheme we show stability and prove convergence. With numerical experiments we analyze the performance of the method for various choices of the penalization parameter and compare with other numerical DFM's.
引用
收藏
页数:29
相关论文
共 38 条
  • [11] ROBUST DISCRETIZATION OF FLOW IN FRACTURED POROUS MEDIA
    Boon, Wietse M.
    Nordbotten, Jan M.
    Yotov, Ivan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (04) : 2203 - 2233
  • [12] VERTEX APPROXIMATE GRADIENT SCHEME FOR HYBRID DIMENSIONAL TWO-PHASE DARCY FLOWS IN FRACTURED POROUS MEDIA
    Brenner, K.
    Groza, M.
    Guichard, C.
    Masson, R.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (02): : 303 - 330
  • [13] A family of mimetic finite difference methods on polygonal and polyhedral meshes
    Brezzi, F
    Lipnikov, K
    Simoncini, V
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (10) : 1533 - 1551
  • [14] Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method
    Burman, Erik
    Hansbo, Peter
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (41-44) : 2680 - 2686
  • [15] Interior-penalty-stabilized Lagrange multiplier methods for the finite-element solution of elliptic interface problems
    Burman, Erik
    Hansbo, Peter
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (03) : 870 - 885
  • [16] Chave F. A., 2018, HYBRID HIGH ORDER ME
  • [17] BOUNDARY INTEGRAL-OPERATORS ON LIPSCHITZ-DOMAINS - ELEMENTARY RESULTS
    COSTABEL, M
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (03) : 613 - 626
  • [18] A proof of the trace theorem of Sobolev spaces on Lischitz domains
    Ding, ZH
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (02) : 591 - 600
  • [19] Model reduction and discretization using hybrid finite volumes for flow in porous media containing faults
    Faille, Isabelle
    Fumagalli, Alessio
    Jaffre, Jerome
    Roberts, Jean E.
    [J]. COMPUTATIONAL GEOSCIENCES, 2016, 20 (02) : 317 - 339
  • [20] Benchmarks for single-phase flow in fractured porous media
    Flemisch, Bernd
    Berre, Inga
    Boon, Wietse
    Fumagalli, Alessio
    Schwenck, Nicolas
    Scotti, Anna
    Stefansson, Ivar
    Tatomir, Alexandru
    [J]. ADVANCES IN WATER RESOURCES, 2018, 111 : 239 - 258