Using CRISPR-Cas systems as antimicrobials

被引:80
作者
Bikard, David [1 ]
Barrangou, Rodolphe [2 ]
机构
[1] Inst Pasteur, Microbiol Dept, Synthet Biol Grp, F-75015 Paris, France
[2] North Carolina State Univ, Dept Food Proc & Nutr Sci, Raleigh, NC 27695 USA
基金
欧洲研究理事会;
关键词
GENETICALLY-ENGINEERED PHAGE; RNA; DNA; BACTERIOPHAGE; IMMUNITY; GENE; INTERFERENCE; ACQUISITION; ENDONUCLEASE; DEGRADATION;
D O I
10.1016/j.mib.2017.08.005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Although CRISPR-Cas systems naturally evolved to provide adaptive immunity in bacteria and archaea, Cas nucleases can be co-opted to target chromosomal sequences rather than invasive genetic elements. Although genome editing is the primary outcome of self-targeting using CRISPR-based technologies in eukaryotes, self-targeting by CRISPR is typically lethal in bacteria. Here, we discuss how DNA damage introduced by Cas nucleases in bacteria can efficiently and specifically lead to plasmid curing or drive cell death. Specifically, we discuss how various CRISPR-Cas systems can be engineered and delivered using phages or phagemids as vectors. These principles establish CRISPR-Cas systems as potent and programmable antimicrobials, and open new avenues for the development of CRISPR-based tools for selective removal of bacterial pathogens and precise microbiome composition alteration.
引用
收藏
页码:155 / 160
页数:6
相关论文
共 51 条
[1]   Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing [J].
Ando, Hiroki ;
Lemire, Sebastien ;
Pires, Diana P. ;
Lu, Timothy K. .
CELL SYSTEMS, 2015, 1 (03) :187-196
[2]   Applications of CRISPR technologies in research and beyond [J].
Barrangou, Rodolphe ;
Doudna, Jennifer A. .
NATURE BIOTECHNOLOGY, 2016, 34 (09) :933-941
[3]   Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference [J].
Beloglazova, Natalia ;
Petit, Pierre ;
Flick, Robert ;
Brown, Greg ;
Savchenko, Alexei ;
Yakunin, Alexander F. .
EMBO JOURNAL, 2011, 30 (22) :4616-4627
[4]   Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials [J].
Bikard, David ;
Euler, Chad W. ;
Jiang, Wenyan ;
Nussenzweig, Philip M. ;
Goldberg, Gregory W. ;
Duportet, Xavier ;
Fischetti, Vincent A. ;
Marraffini, Luciano A. .
NATURE BIOTECHNOLOGY, 2014, 32 (11) :1146-1150
[5]   Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system [J].
Bikard, David ;
Jiang, Wenyan ;
Samai, Poulami ;
Hochschild, Ann ;
Zhang, Feng ;
Marraffini, Luciano A. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (15) :7429-7437
[6]   CRISPR Interference Can Prevent Natural Transformation and Virulence Acquisition during In Vivo Bacterial Infection [J].
Bikard, David ;
Hatoum-Aslan, Asma ;
Mucida, Daniel ;
Marraffini, Luciano A. .
CELL HOST & MICROBE, 2012, 12 (02) :177-186
[7]   Small CRISPR RNAs guide antiviral defense in prokaryotes [J].
Brouns, Stan J. J. ;
Jore, Matthijs M. ;
Lundgren, Magnus ;
Westra, Edze R. ;
Slijkhuis, Rik J. H. ;
Snijders, Ambrosius P. L. ;
Dickman, Mark J. ;
Makarova, Kira S. ;
Koonin, Eugene V. ;
van der Oost, John .
SCIENCE, 2008, 321 (5891) :960-964
[8]   Targeted DNA degradation using a CRISPR device stably carried in the host genome [J].
Caliando, Brian J. ;
Voigt, Christopher A. .
NATURE COMMUNICATIONS, 2015, 6
[9]   Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases [J].
Citorik, Robert J. ;
Mimee, Mark ;
Lu, Timothy K. .
NATURE BIOTECHNOLOGY, 2014, 32 (11) :1141-1145
[10]   Consequences of Cas9 cleavage in the chromosome of Escherichia coli [J].
Cui, Lun ;
Bikard, David .
NUCLEIC ACIDS RESEARCH, 2016, 44 (09) :4243-4251