Nano-carriers of COVID-19 vaccines: main pillars of efficacy

被引:9
作者
Constantin, Carolina [1 ,2 ]
Pisani, Anissa [3 ,4 ]
Bardi, Giuseppe [3 ]
Neagu, Monica [1 ,2 ,5 ]
机构
[1] Victor Babes Natl Inst Pathol, 99-101 Spl Independentei, Bucharest 050096, Romania
[2] Colentina Clin Hosp, 19-21 Sos Stefan Cel Mare, Bucharest 1921, Romania
[3] Ist Italiano Tecnol, Nanobiointeract & Nanodiagnost, Via Morego 30, I-16163 Genoa, Italy
[4] Univ Genoa, Dept Chem & Ind Chem, Via Dodecaneso 31, I-16146 Genoa, Italy
[5] Univ Bucharest, 93-95 Spl Independentei, Bucharest, Romania
关键词
COVID-19; immunity; nanoparticles; SARS-CoV-2; vaccine carrier; vaccines; MESSENGER-RNA VACCINES; ANAPHYLAXIS; ANTIBODIES; PEG;
D O I
10.2217/nnm-2021-0250
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
As the current COVID-19 pandemic illustrates, vaccination is the most powerful method of disease prevention and public confidence in vaccines depends on their safety and efficacy. The information gathered in the current pandemic is growing at an accelerated pace. Both the key vital protein DNA/RNA messengers and the delivery carriers are the elements of a puzzle including their interactions with the immune system to suppress SARS-CoV-2 infection. A new nano-era is beginning in the vaccine development field and an array of side applications for diagnostic and antiviral tools will likely emerge. This review focuses on the evolution of vaccine carriers up to COVID-19-aimed nanoparticles and the immune-related adverse effects imposed by these nanocarriers.
引用
收藏
页码:2377 / 2387
页数:11
相关论文
共 84 条
  • [1] mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials
    A Feldman, Robert
    Fuhr, Rainard
    Smolenov, Igor
    Ribeiro, Amilcar
    Panther, Lori
    Watson, Mike
    Senn, Joseph J.
    Smith, Mike
    Almarsson, Orn
    Pujar, Hari S.
    Laska, Michael E.
    Thompson, James
    Zaks, Tal
    Ciaramella, Giuseppe
    [J]. VACCINE, 2019, 37 (25) : 3326 - 3334
  • [2] Mastocytosis
    Abid, Ayesha
    Malone, Michael A.
    Curci, Katherine
    [J]. PRIMARY CARE, 2016, 43 (03): : 505 - +
  • [3] Vaccine adjuvants revisited
    Aguilar, J. C.
    Rodriguez, E. G.
    [J]. VACCINE, 2007, 25 (19) : 3752 - 3762
  • [4] Annunziato F, 2017, METHODS MOL BIOL, V1514, P127, DOI 10.1007/978-1-4939-6548-9_11
  • [5] [Anonymous], 1945, LANCET, V249, P821
  • [6] Nanometric Virus-Like Particles: Key Tools for Vaccine and Adjuvant Technology
    Bardi, Giuseppe
    [J]. VACCINES, 2020, 8 (03)
  • [7] Bilateral superior ophthalmic vein thrombosis, ischaemic stroke, and immune thrombocytopenia after ChAdOx1 nCoV-19 vaccination
    Bayas, Antonios
    Menacher, Martina
    Christ, Monika
    Behrens, Lars
    Rank, Andreas
    Naumann, Markus
    [J]. LANCET, 2021, 397 (10285) : E11 - E11
  • [8] Polymeric micro- and nanoparticles for immune modulation
    Ben-Akiva, Elana
    Witte, Savannah Est
    Meyer, Randall A.
    Rhodes, Kelly R.
    Green, Jordan J.
    [J]. BIOMATERIALS SCIENCE, 2019, 7 (01) : 14 - 30
  • [9] Current challenges: from the path of "original antigenic sin" towards the development of universal flu vaccines
    Biswas, Asim
    Chakrabarti, Alok K.
    Dutta, Shanta
    [J]. INTERNATIONAL REVIEWS OF IMMUNOLOGY, 2020, 39 (01) : 21 - 36
  • [10] Strategies for Vaccination: Conventional Vaccine Approaches Versus New-Generation Strategies in Combination with Adjuvants
    Bouazzaoui, Abdellatif
    Abdellatif, Ahmed A. H.
    Al-Allaf, Faisal A.
    Bogari, Neda M.
    Al-Dehlawi, Saied
    Qari, Sameer H.
    [J]. PHARMACEUTICS, 2021, 13 (02) : 1 - 20