Embedding based Link Prediction for Knowledge Graph Completion

被引:4
|
作者
Biswas, Russa [1 ,2 ]
机构
[1] FIZ Karlsruhe Leibniz Inst Informat Infrastruct, Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst AIFB, Karlsruhe, Germany
来源
CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT | 2020年
关键词
Knowledge Graph Embedding; Encoder-Decoder Framework; Link Prediction; Entity Type Prediction; Entity Alignment;
D O I
10.1145/3340531.3418512
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge Graphs (KGs) have recently gained attention for representing knowledge about a particular domain. Since its advent, the Linked Open Data (LOD) cloud has constantly been growing containing many KGs about many different domains such as government, scholarly data, biomedical domain, etc. Apart from facilitating the inter-connectivity of datasets in the LOD cloud, KGs have been used in a variety of machine learning and Natural Language Processing (NLP) based applications. However, the information present in the KGs are sparse and are often incomplete. Predicting the missing links between the entities is necessary to overcome this issue. Moreover, in the LOD cloud, information about the same entities is available in multiple KGs in different forms. But the information that these entities are the same across KGs is missing. The main focus of this thesis is to do Knowledge Graph Completion by tackling the link prediction tasks within a KG as well as across different KGs. To do so, the latent representation of KGs in a low dimensional vector space has been exploited to predict the missing information in order to complete the KGs.
引用
收藏
页码:3221 / 3224
页数:4
相关论文
共 50 条
  • [1] Structural context-based knowledge graph embedding for link prediction
    Zhang, Qianjin
    Wang, Ronggui
    Yang, Juan
    Xue, Lixia
    NEUROCOMPUTING, 2022, 470 : 109 - 120
  • [2] A Hierarchical Knowledge Graph Embedding Framework for Link Prediction
    Liu, Shuang
    Hou, Chengwang
    Meng, Jiana
    Chen, Peng
    Kolmanic, Simon
    IEEE ACCESS, 2024, 12 : 173338 - 173350
  • [3] Link Prediction Based on Data Augmentation and Metric Learning Knowledge Graph Embedding
    Duan, Lijuan
    Han, Shengwen
    Jiang, Wei
    He, Meng
    Qiao, Yuanhua
    APPLIED SCIENCES-BASEL, 2024, 14 (08):
  • [4] Enhancing knowledge graph embedding by composite neighbors for link prediction
    Wang, Kai
    Liu, Yu
    Xu, Xiujuan
    Sheng, Quan Z.
    COMPUTING, 2020, 102 (12) : 2587 - 2606
  • [5] Enhancing knowledge graph embedding by composite neighbors for link prediction
    Kai Wang
    Yu Liu
    Xiujuan Xu
    Quan Z. Sheng
    Computing, 2020, 102 : 2587 - 2606
  • [6] Knowledge graph embedding with inverse function representation for link prediction
    Zhang, Qianjin
    Xu, Yandan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [7] Knowledge graph embedding based on embedding permutation and high-frequency feature fusion for link prediction
    Yu, Qien
    Vargas, Danilo Vasconcellos
    NEUROCOMPUTING, 2025, 633
  • [8] Evaluating diabetes dataset for knowledge graph embedding based link prediction
    Singh, Sushmita
    Siwach, Manvi
    DATA & KNOWLEDGE ENGINEERING, 2025, 157
  • [9] HyperspherE: An Embedding Method for Knowledge Graph Completion Based on Hypersphere
    Dong, Yao
    Guo, Xiaobo
    Xiang, Ji
    Liu, Kai
    Tang, Zhihao
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2021, 12815 : 517 - 528
  • [10] Scaling Knowledge Graph Embedding Models for Link Prediction
    Sheikh, Nasrullah
    Qin, Xiao
    Reinwald, Berthold
    Lei, Chuan
    PROCEEDINGS OF THE 2022 2ND EUROPEAN WORKSHOP ON MACHINE LEARNING AND SYSTEMS (EUROMLSYS '22), 2022, : 87 - 94